ndarray.js (2491B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MAIN // 22 23 /** 24 * Computes the variance of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer. 25 * 26 * ## Method 27 * 28 * - This implementation uses a one-pass algorithm, as proposed by Youngs and Cramer (1971). 29 * 30 * ## References 31 * 32 * - Youngs, Edward A., and Elliot M. Cramer. 1971. "Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms." _Technometrics_ 13 (3): 657–65. doi:[10.1080/00401706.1971.10488826](https://doi.org/10.1080/00401706.1971.10488826). 33 * 34 * @param {PositiveInteger} N - number of indexed elements 35 * @param {number} correction - degrees of freedom adjustment 36 * @param {NumericArray} x - input array 37 * @param {integer} stride - stride length 38 * @param {NonNegativeInteger} offset - starting index 39 * @returns {number} variance 40 * 41 * @example 42 * var floor = require( '@stdlib/math/base/special/floor' ); 43 * 44 * var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ]; 45 * var N = floor( x.length / 2 ); 46 * 47 * var v = nanvarianceyc( N, 1, x, 2, 1 ); 48 * // returns 6.25 49 */ 50 function nanvarianceyc( N, correction, x, stride, offset ) { 51 var sum; 52 var ix; 53 var nc; 54 var S; 55 var v; 56 var d; 57 var n; 58 var i; 59 60 if ( N <= 0 ) { 61 return NaN; 62 } 63 if ( N === 1 || stride === 0 ) { 64 v = x[ offset ]; 65 if ( v === v && N-correction > 0.0 ) { 66 return 0.0; 67 } 68 return NaN; 69 } 70 ix = offset; 71 72 // Find the first non-NaN element... 73 for ( i = 0; i < N; i++ ) { 74 v = x[ ix ]; 75 if ( v === v ) { 76 break; 77 } 78 ix += stride; 79 } 80 if ( i === N ) { 81 return NaN; 82 } 83 ix += stride; 84 sum = v; 85 S = 0.0; 86 i += 1; 87 n = 1; 88 for ( i; i < N; i++ ) { 89 v = x[ ix ]; 90 if ( v === v ) { 91 n += 1; 92 sum += v; 93 d = (n*v) - sum; 94 S += (1.0/(n*(n-1))) * d * d; 95 } 96 ix += stride; 97 } 98 nc = n - correction; 99 if ( nc <= 0.0 ) { 100 return NaN; 101 } 102 return S / nc; 103 } 104 105 106 // EXPORTS // 107 108 module.exports = nanvarianceyc;