ndarray.js (2365B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MAIN // 22 23 /** 24 * Computes the variance of a strided array ignoring `NaN` values and using Welford's algorithm. 25 * 26 * ## References 27 * 28 * - Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022](https://doi.org/10.1080/00401706.1962.10490022). 29 * - van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 149–50. doi:[10.1145/362929.362961](https://doi.org/10.1145/362929.362961). 30 * 31 * @param {PositiveInteger} N - number of indexed elements 32 * @param {number} correction - degrees of freedom adjustment 33 * @param {NumericArray} x - input array 34 * @param {integer} stride - stride length 35 * @param {NonNegativeInteger} offset - starting index 36 * @returns {number} variance 37 * 38 * @example 39 * var floor = require( '@stdlib/math/base/special/floor' ); 40 * 41 * var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ]; 42 * var N = floor( x.length / 2 ); 43 * 44 * var v = nanvariancewd( N, 1, x, 2, 1 ); 45 * // returns 6.25 46 */ 47 function nanvariancewd( N, correction, x, stride, offset ) { 48 var delta; 49 var mu; 50 var M2; 51 var ix; 52 var nc; 53 var v; 54 var n; 55 var i; 56 57 if ( N <= 0 ) { 58 return NaN; 59 } 60 if ( N === 1 || stride === 0 ) { 61 v = x[ offset ]; 62 if ( v === v && N-correction > 0.0 ) { 63 return 0.0; 64 } 65 return NaN; 66 } 67 ix = offset; 68 M2 = 0.0; 69 mu = 0.0; 70 n = 0; 71 for ( i = 0; i < N; i++ ) { 72 v = x[ ix ]; 73 if ( v === v ) { 74 delta = v - mu; 75 n += 1; 76 mu += delta / n; 77 M2 += delta * ( v - mu ); 78 } 79 ix += stride; 80 } 81 nc = n - correction; 82 if ( nc <= 0.0 ) { 83 return NaN; 84 } 85 return M2 / nc; 86 } 87 88 89 // EXPORTS // 90 91 module.exports = nanvariancewd;