time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (6085B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2020 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # nanmeanwd
     22 
     23 > Calculate the [arithmetic mean][arithmetic-mean] of a strided array, ignoring `NaN` values and using Welford's algorithm.
     24 
     25 <section class="intro">
     26 
     27 The [arithmetic mean][arithmetic-mean] is defined as
     28 
     29 <!-- <equation class="equation" label="eq:arithmetic_mean" align="center" raw="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the arithmetic mean."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:arithmetic_mean">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@2f84494bd864b754f743c5eff4fae55faa8ded56/lib/node_modules/@stdlib/stats/base/nanmeanwd/docs/img/equation_arithmetic_mean.svg" alt="Equation for the arithmetic mean.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 </section>
     39 
     40 <!-- /.intro -->
     41 
     42 <section class="usage">
     43 
     44 ## Usage
     45 
     46 ```javascript
     47 var nanmeanwd = require( '@stdlib/stats/base/nanmeanwd' );
     48 ```
     49 
     50 #### nanmeanwd( N, x, stride )
     51 
     52 Computes the [arithmetic mean][arithmetic-mean] of a strided array `x`, ignoring `NaN` values and using Welford's algorithm.
     53 
     54 ```javascript
     55 var x = [ 1.0, -2.0, NaN, 2.0 ];
     56 var N = x.length;
     57 
     58 var v = nanmeanwd( N, x, 1 );
     59 // returns ~0.3333
     60 ```
     61 
     62 The function has the following parameters:
     63 
     64 -   **N**: number of indexed elements.
     65 -   **x**: input [`Array`][mdn-array] or [`typed array`][mdn-typed-array].
     66 -   **stride**: index increment for `x`.
     67 
     68 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in `x`,
     69 
     70 ```javascript
     71 var floor = require( '@stdlib/math/base/special/floor' );
     72 
     73 var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ];
     74 var N = floor( x.length / 2 );
     75 
     76 var v = nanmeanwd( N, x, 2 );
     77 // returns 1.25
     78 ```
     79 
     80 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
     81 
     82 <!-- eslint-disable stdlib/capitalized-comments -->
     83 
     84 ```javascript
     85 var Float64Array = require( '@stdlib/array/float64' );
     86 var floor = require( '@stdlib/math/base/special/floor' );
     87 
     88 var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
     89 var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
     90 
     91 var N = floor( x0.length / 2 );
     92 
     93 var v = nanmeanwd( N, x1, 2 );
     94 // returns 1.25
     95 ```
     96 
     97 #### nanmeanwd.ndarray( N, x, stride, offset )
     98 
     99 Computes the [arithmetic mean][arithmetic-mean] of a strided array, ignoring `NaN` values and using Welford's algorithm and alternative indexing semantics.
    100 
    101 ```javascript
    102 var x = [ 1.0, -2.0, NaN, 2.0 ];
    103 var N = x.length;
    104 
    105 var v = nanmeanwd.ndarray( N, x, 1, 0 );
    106 // returns ~0.33333
    107 ```
    108 
    109 The function has the following additional parameters:
    110 
    111 -   **offset**: starting index for `x`.
    112 
    113 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other value in `x` starting from the second value
    114 
    115 ```javascript
    116 var floor = require( '@stdlib/math/base/special/floor' );
    117 
    118 var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ];
    119 var N = floor( x.length / 2 );
    120 
    121 var v = nanmeanwd.ndarray( N, x, 2, 1 );
    122 // returns 1.25
    123 ```
    124 
    125 </section>
    126 
    127 <!-- /.usage -->
    128 
    129 <section class="notes">
    130 
    131 ## Notes
    132 
    133 -   If `N <= 0`, both functions return `NaN`.
    134 -   If every indexed element is `NaN`, both functions return `NaN`.
    135 -   Depending on the environment, the typed versions ([`dnanmeanwd`][@stdlib/stats/base/dnanmeanwd], [`snanmeanwd`][@stdlib/stats/base/snanmeanwd], etc.) are likely to be significantly more performant.
    136 
    137 </section>
    138 
    139 <!-- /.notes -->
    140 
    141 <section class="examples">
    142 
    143 ## Examples
    144 
    145 <!-- eslint no-undef: "error" -->
    146 
    147 ```javascript
    148 var randu = require( '@stdlib/random/base/randu' );
    149 var round = require( '@stdlib/math/base/special/round' );
    150 var Float64Array = require( '@stdlib/array/float64' );
    151 var nanmeanwd = require( '@stdlib/stats/base/nanmeanwd' );
    152 
    153 var x;
    154 var i;
    155 
    156 x = new Float64Array( 10 );
    157 for ( i = 0; i < x.length; i++ ) {
    158     if ( randu() < 0.2 ) {
    159         x[ i ] = NaN;
    160     } else {
    161         x[ i ] = round( (randu()*100.0) - 50.0 );
    162     }
    163 }
    164 console.log( x );
    165 
    166 var v = nanmeanwd( x.length, x, 1 );
    167 console.log( v );
    168 ```
    169 
    170 </section>
    171 
    172 <!-- /.examples -->
    173 
    174 * * *
    175 
    176 <section class="references">
    177 
    178 ## References
    179 
    180 -   Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022][@welford:1962a].
    181 -   van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 149–50. doi:[10.1145/362929.362961][@vanreeken:1968a].
    182 
    183 </section>
    184 
    185 <!-- /.references -->
    186 
    187 <section class="links">
    188 
    189 [arithmetic-mean]: https://en.wikipedia.org/wiki/Arithmetic_mean
    190 
    191 [mdn-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
    192 
    193 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
    194 
    195 [@stdlib/stats/base/dnanmeanwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmeanwd
    196 
    197 [@stdlib/stats/base/snanmeanwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmeanwd
    198 
    199 [@welford:1962a]: https://doi.org/10.1080/00401706.1962.10490022
    200 
    201 [@vanreeken:1968a]: https://doi.org/10.1145/362929.362961
    202 
    203 </section>
    204 
    205 <!-- /.links -->