ndarray.js (2612B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MAIN // 22 23 /** 24 * Computes the arithmetic mean of a strided array, ignoring `NaN` values and using a two-pass error correction algorithm. 25 * 26 * ## Method 27 * 28 * - This implementation uses a two-pass approach, as suggested by Neely (1966). 29 * 30 * ## References 31 * 32 * - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958). 33 * - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036). 34 * 35 * @param {PositiveInteger} N - number of indexed elements 36 * @param {NumericArray} x - input array 37 * @param {integer} stride - stride length 38 * @param {NonNegativeInteger} offset - starting index 39 * @returns {number} arithmetic mean 40 * 41 * @example 42 * var floor = require( '@stdlib/math/base/special/floor' ); 43 * 44 * var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ]; 45 * var N = floor( x.length / 2 ); 46 * 47 * var v = nanmeanpn( N, x, 2, 1 ); 48 * // returns 1.25 49 */ 50 function nanmeanpn( N, x, stride, offset ) { 51 var ix; 52 var v; 53 var s; 54 var t; 55 var n; 56 var i; 57 58 if ( N <= 0 ) { 59 return NaN; 60 } 61 if ( N === 1 || stride === 0 ) { 62 return x[ offset ]; 63 } 64 ix = offset; 65 66 // Compute an estimate for the mean... 67 s = 0.0; 68 n = 0; 69 for ( i = 0; i < N; i++ ) { 70 v = x[ ix ]; 71 if ( v === v ) { 72 n += 1; 73 s += v; 74 } 75 ix += stride; 76 } 77 if ( n === 0 ) { 78 return NaN; 79 } 80 s /= n; 81 82 // Compute an error term... 83 ix = offset; 84 t = 0.0; 85 for ( i = 0; i < N; i++ ) { 86 v = x[ ix ]; 87 if ( v === v ) { 88 t += v - s; 89 } 90 ix += stride; 91 } 92 return s + (t/n); 93 } 94 95 96 // EXPORTS // 97 98 module.exports = nanmeanpn;