time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (5887B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2020 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # nanmeanors
     22 
     23 > Calculate the [arithmetic mean][arithmetic-mean] of a strided array, ignoring `NaN` values and using ordinary recursive summation.
     24 
     25 <section class="intro">
     26 
     27 The [arithmetic mean][arithmetic-mean] is defined as
     28 
     29 <!-- <equation class="equation" label="eq:arithmetic_mean" align="center" raw="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the arithmetic mean."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:arithmetic_mean">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@9175c13dbc0434906c9644e01a0c6d2f700fc087/lib/node_modules/@stdlib/stats/base/nanmeanors/docs/img/equation_arithmetic_mean.svg" alt="Equation for the arithmetic mean.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 </section>
     39 
     40 <!-- /.intro -->
     41 
     42 <section class="usage">
     43 
     44 ## Usage
     45 
     46 ```javascript
     47 var nanmeanors = require( '@stdlib/stats/base/nanmeanors' );
     48 ```
     49 
     50 #### nanmeanors( N, x, stride )
     51 
     52 Computes the [arithmetic mean][arithmetic-mean] of a strided array `x`, ignoring `NaN` values and using ordinary recursive summation.
     53 
     54 ```javascript
     55 var x = [ 1.0, -2.0, NaN, 2.0 ];
     56 var N = x.length;
     57 
     58 var v = nanmeanors( N, x, 1 );
     59 // returns ~0.3333
     60 ```
     61 
     62 The function has the following parameters:
     63 
     64 -   **N**: number of indexed elements.
     65 -   **x**: input [`Array`][mdn-array] or [`typed array`][mdn-typed-array].
     66 -   **stride**: index increment for `x`.
     67 
     68 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in `x`,
     69 
     70 ```javascript
     71 var floor = require( '@stdlib/math/base/special/floor' );
     72 
     73 var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ];
     74 var N = floor( x.length / 2 );
     75 
     76 var v = nanmeanors( N, x, 2 );
     77 // returns 1.25
     78 ```
     79 
     80 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
     81 
     82 <!-- eslint-disable stdlib/capitalized-comments -->
     83 
     84 ```javascript
     85 var Float64Array = require( '@stdlib/array/float64' );
     86 var floor = require( '@stdlib/math/base/special/floor' );
     87 
     88 var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
     89 var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
     90 
     91 var N = floor( x0.length / 2 );
     92 
     93 var v = nanmeanors( N, x1, 2 );
     94 // returns 1.25
     95 ```
     96 
     97 #### nanmeanors.ndarray( N, x, stride, offset )
     98 
     99 Computes the [arithmetic mean][arithmetic-mean] of a strided array, ignoring `NaN` values and using ordinary recursive summation and alternative indexing semantics.
    100 
    101 ```javascript
    102 var x = [ 1.0, -2.0, NaN, 2.0 ];
    103 var N = x.length;
    104 
    105 var v = nanmeanors.ndarray( N, x, 1, 0 );
    106 // returns ~0.33333
    107 ```
    108 
    109 The function has the following additional parameters:
    110 
    111 -   **offset**: starting index for `x`.
    112 
    113 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other value in `x` starting from the second value
    114 
    115 ```javascript
    116 var floor = require( '@stdlib/math/base/special/floor' );
    117 
    118 var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ];
    119 var N = floor( x.length / 2 );
    120 
    121 var v = nanmeanors.ndarray( N, x, 2, 1 );
    122 // returns 1.25
    123 ```
    124 
    125 </section>
    126 
    127 <!-- /.usage -->
    128 
    129 <section class="notes">
    130 
    131 ## Notes
    132 
    133 -   If `N <= 0`, both functions return `NaN`.
    134 -   If every indexed element is `NaN`, both functions return `NaN`.
    135 -   Ordinary recursive summation (i.e., a "simple" sum) is performant, but can incur significant numerical error. If performance is paramount and error tolerated, using ordinary recursive summation to compute an arithmetic mean is acceptable; in all other cases, exercise due caution.
    136 -   Depending on the environment, the typed versions ([`dnanmeanors`][@stdlib/stats/base/dnanmeanors], [`snanmeanors`][@stdlib/stats/base/snanmeanors], etc.) are likely to be significantly more performant.
    137 
    138 </section>
    139 
    140 <!-- /.notes -->
    141 
    142 <section class="examples">
    143 
    144 ## Examples
    145 
    146 <!-- eslint no-undef: "error" -->
    147 
    148 ```javascript
    149 var randu = require( '@stdlib/random/base/randu' );
    150 var round = require( '@stdlib/math/base/special/round' );
    151 var Float64Array = require( '@stdlib/array/float64' );
    152 var nanmeanors = require( '@stdlib/stats/base/nanmeanors' );
    153 
    154 var x;
    155 var i;
    156 
    157 x = new Float64Array( 10 );
    158 for ( i = 0; i < x.length; i++ ) {
    159     if ( randu() < 0.2 ) {
    160         x[ i ] = NaN;
    161     } else {
    162         x[ i ] = round( (randu()*100.0) - 50.0 );
    163     }
    164 }
    165 console.log( x );
    166 
    167 var v = nanmeanors( x.length, x, 1 );
    168 console.log( v );
    169 ```
    170 
    171 </section>
    172 
    173 <!-- /.examples -->
    174 
    175 <section class="references">
    176 
    177 </section>
    178 
    179 <!-- /.references -->
    180 
    181 <section class="links">
    182 
    183 [arithmetic-mean]: https://en.wikipedia.org/wiki/Arithmetic_mean
    184 
    185 [mdn-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
    186 
    187 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
    188 
    189 [@stdlib/stats/base/dnanmeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmeanors
    190 
    191 [@stdlib/stats/base/snanmeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmeanors
    192 
    193 </section>
    194 
    195 <!-- /.links -->