time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

meanpn.js (2267B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var gsumpw = require( '@stdlib/blas/ext/base/gsumpw' );
     24 var gapxsumpw = require( '@stdlib/blas/ext/base/gapxsumpw' );
     25 
     26 
     27 // MAIN //
     28 
     29 /**
     30 * Computes the arithmetic mean of a strided array using a two-pass error correction algorithm.
     31 *
     32 * ## Method
     33 *
     34 * -   This implementation uses a two-pass approach, as suggested by Neely (1966).
     35 *
     36 * ## References
     37 *
     38 * -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
     39 * -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
     40 *
     41 * @param {PositiveInteger} N - number of indexed elements
     42 * @param {NumericArray} x - input array
     43 * @param {integer} stride - stride length
     44 * @returns {number} arithmetic mean
     45 *
     46 * @example
     47 * var x = [ 1.0, -2.0, 2.0 ];
     48 * var N = x.length;
     49 *
     50 * var v = meanpn( N, x, 1 );
     51 * // returns ~0.3333
     52 */
     53 function meanpn( N, x, stride ) {
     54 	var mu;
     55 	var c;
     56 
     57 	if ( N <= 0 ) {
     58 		return NaN;
     59 	}
     60 	if ( N === 1 || stride === 0 ) {
     61 		return x[ 0 ];
     62 	}
     63 	// Compute an estimate for the meanpn:
     64 	mu = gsumpw( N, x, stride ) / N;
     65 
     66 	// Compute an error term:
     67 	c = gapxsumpw( N, -mu, x, stride ) / N;
     68 
     69 	return mu + c;
     70 }
     71 
     72 
     73 // EXPORTS //
     74 
     75 module.exports = meanpn;