time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

dvarmpn.js (2377B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MAIN //
     22 
     23 /**
     24 * Computes the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm.
     25 *
     26 * ## References
     27 *
     28 * -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
     29 * -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
     30 *
     31 * @param {PositiveInteger} N - number of indexed elements
     32 * @param {number} mean - mean
     33 * @param {number} correction - degrees of freedom adjustment
     34 * @param {Float64Array} x - input array
     35 * @param {integer} stride - stride length
     36 * @returns {number} variance
     37 *
     38 * @example
     39 * var Float64Array = require( '@stdlib/array/float64' );
     40 *
     41 * var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
     42 *
     43 * var v = dvarmpn( x.length, 1.0/3.0, 1, x, 1 );
     44 * // returns ~4.3333
     45 */
     46 function dvarmpn( N, mean, correction, x, stride ) {
     47 	var ix;
     48 	var M2;
     49 	var M;
     50 	var d;
     51 	var n;
     52 	var i;
     53 
     54 	n = N - correction;
     55 	if ( N <= 0 || n <= 0.0 ) {
     56 		return NaN;
     57 	}
     58 	if ( N === 1 || stride === 0 ) {
     59 		return 0.0;
     60 	}
     61 	if ( stride < 0 ) {
     62 		ix = (1-N) * stride;
     63 	} else {
     64 		ix = 0;
     65 	}
     66 	M2 = 0.0;
     67 	M = 0.0;
     68 	for ( i = 0; i < N; i++ ) {
     69 		d = x[ ix ] - mean;
     70 		M2 += d * d;
     71 		M += d;
     72 		ix += stride;
     73 	}
     74 	return (M2/n) - ((M/N)*(M/n));
     75 }
     76 
     77 
     78 // EXPORTS //
     79 
     80 module.exports = dvarmpn;