time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

repl.txt (4084B)


      1 
      2 {{alias}}( N, mean, correction, x, stride )
      3     Computes the variance of a double-precision floating-point strided array
      4     provided a known mean.
      5 
      6     The `N` and `stride` parameters determine which elements in `x` are accessed
      7     at runtime.
      8 
      9     Indexing is relative to the first index. To introduce an offset, use a typed
     10     array view.
     11 
     12     If `N <= 0`, the function returns `NaN`.
     13 
     14     Parameters
     15     ----------
     16     N: integer
     17         Number of indexed elements.
     18 
     19     mean: number
     20         Mean.
     21 
     22     correction: number
     23         Degrees of freedom adjustment. Setting this parameter to a value other
     24         than `0` has the effect of adjusting the divisor during the calculation
     25         of the variance according to `N - c` where `c` corresponds to the
     26         provided degrees of freedom adjustment. When computing the variance of a
     27         population, setting this parameter to `0` is the standard choice (i.e.,
     28         the provided array contains data constituting an entire population).
     29         When computing the unbiased sample variance, setting this parameter to
     30         `1` is the standard choice (i.e., the provided array contains data
     31         sampled from a larger population; this is commonly referred to as
     32         Bessel's correction).
     33 
     34     x: Float64Array
     35         Input array.
     36 
     37     stride: integer
     38         Index increment.
     39 
     40     Returns
     41     -------
     42     out: number
     43         The variance.
     44 
     45     Examples
     46     --------
     47     // Standard Usage:
     48     > var x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 2.0 ] );
     49     > {{alias}}( x.length, 1.0/3.0, 1, x, 1 )
     50     ~4.3333
     51 
     52     // Using `N` and `stride` parameters:
     53     > x = new {{alias:@stdlib/array/float64}}( [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0 ] );
     54     > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
     55     > {{alias}}( N, 1.0/3.0, 1, x, 2 )
     56     ~4.3333
     57 
     58     // Using view offsets:
     59     > var x0 = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, 1.0 ] );
     60     > var x1 = new {{alias:@stdlib/array/float64}}( x0.buffer, x0.BYTES_PER_ELEMENT*1 );
     61     > N = {{alias:@stdlib/math/base/special/floor}}( x0.length / 2 );
     62     > {{alias}}( N, 1.0/3.0, 1, x1, 2 )
     63     ~4.3333
     64 
     65 {{alias}}.ndarray( N, mean, correction, x, stride, offset )
     66     Computes the variance of a double-precision floating-point strided array
     67     provided a known mean and using alternative indexing semantics.
     68 
     69     While typed array views mandate a view offset based on the underlying
     70     buffer, the `offset` parameter supports indexing semantics based on a
     71     starting index.
     72 
     73     Parameters
     74     ----------
     75     N: integer
     76         Number of indexed elements.
     77 
     78     mean: number
     79         Mean.
     80 
     81     correction: number
     82         Degrees of freedom adjustment. Setting this parameter to a value other
     83         than `0` has the effect of adjusting the divisor during the calculation
     84         of the variance according to `N - c` where `c` corresponds to the
     85         provided degrees of freedom adjustment. When computing the variance of a
     86         population, setting this parameter to `0` is the standard choice (i.e.,
     87         the provided array contains data constituting an entire population).
     88         When computing the unbiased sample variance, setting this parameter to
     89         `1` is the standard choice (i.e., the provided array contains data
     90         sampled from a larger population; this is commonly referred to as
     91         Bessel's correction).
     92 
     93     x: Float64Array
     94         Input array.
     95 
     96     stride: integer
     97         Index increment.
     98 
     99     offset: integer
    100         Starting index.
    101 
    102     Returns
    103     -------
    104     out: number
    105         The variance.
    106 
    107     Examples
    108     --------
    109     // Standard Usage:
    110     > var x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 2.0 ] );
    111     > {{alias}}.ndarray( x.length, 1.0/3.0, 1, x, 1, 0 )
    112     ~4.3333
    113 
    114     // Using offset parameter:
    115     > var x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, 1.0 ] );
    116     > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
    117     > {{alias}}.ndarray( N, 1.0/3.0, 1, x, 2, 1 )
    118     ~4.3333
    119 
    120     See Also
    121     --------
    122