README.md (8697B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2020 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # dvarm 22 23 > Calculate the [variance][variance] of a double-precision floating-point strided array provided a known mean. 24 25 <section class="intro"> 26 27 The population [variance][variance] of a finite size population of size `N` is given by 28 29 <!-- <equation class="equation" label="eq:population_variance" align="center" raw="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" alt="Equation for the population variance."> --> 30 31 <div class="equation" align="center" data-raw-text="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" data-equation="eq:population_variance"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@79744a33483f9d23b00195aaf2d4b66614b97fac/lib/node_modules/@stdlib/stats/base/dvarm/docs/img/equation_population_variance.svg" alt="Equation for the population variance."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where the population mean is given by 39 40 <!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> --> 41 42 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean"> 43 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@79744a33483f9d23b00195aaf2d4b66614b97fac/lib/node_modules/@stdlib/stats/base/dvarm/docs/img/equation_population_mean.svg" alt="Equation for the population mean."> 44 <br> 45 </div> 46 47 <!-- </equation> --> 48 49 Often in the analysis of data, the true population [variance][variance] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population [variance][variance], the result is biased and yields a **biased sample variance**. To compute an **unbiased sample variance** for a sample of size `n`, 50 51 <!-- <equation class="equation" label="eq:unbiased_sample_variance" align="center" raw="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" alt="Equation for computing an unbiased sample variance."> --> 52 53 <div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" data-equation="eq:unbiased_sample_variance"> 54 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@79744a33483f9d23b00195aaf2d4b66614b97fac/lib/node_modules/@stdlib/stats/base/dvarm/docs/img/equation_unbiased_sample_variance.svg" alt="Equation for computing an unbiased sample variance."> 55 <br> 56 </div> 57 58 <!-- </equation> --> 59 60 where the sample mean is given by 61 62 <!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> --> 63 64 <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean"> 65 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@79744a33483f9d23b00195aaf2d4b66614b97fac/lib/node_modules/@stdlib/stats/base/dvarm/docs/img/equation_sample_mean.svg" alt="Equation for the sample mean."> 66 <br> 67 </div> 68 69 <!-- </equation> --> 70 71 The use of the term `n-1` is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample variance and population variance. Depending on the characteristics of the population distribution, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators. 72 73 </section> 74 75 <!-- /.intro --> 76 77 <section class="usage"> 78 79 ## Usage 80 81 ```javascript 82 var dvarm = require( '@stdlib/stats/base/dvarm' ); 83 ``` 84 85 #### dvarm( N, mean, correction, x, stride ) 86 87 Computes the [variance][variance] of a double-precision floating-point strided array `x` provided a known `mean`. 88 89 ```javascript 90 var Float64Array = require( '@stdlib/array/float64' ); 91 92 var x = new Float64Array( [ 1.0, -2.0, 2.0 ] ); 93 94 var v = dvarm( x.length, 1.0/3.0, 1, x, 1 ); 95 // returns ~4.3333 96 ``` 97 98 The function has the following parameters: 99 100 - **N**: number of indexed elements. 101 - **mean**: mean. 102 - **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction). 103 - **x**: input [`Float64Array`][@stdlib/array/float64]. 104 - **stride**: index increment for `x`. 105 106 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`, 107 108 ```javascript 109 var Float64Array = require( '@stdlib/array/float64' ); 110 var floor = require( '@stdlib/math/base/special/floor' ); 111 112 var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] ); 113 var N = floor( x.length / 2 ); 114 115 var v = dvarm( N, 1.25, 1, x, 2 ); 116 // returns 6.25 117 ``` 118 119 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views. 120 121 <!-- eslint-disable stdlib/capitalized-comments --> 122 123 ```javascript 124 var Float64Array = require( '@stdlib/array/float64' ); 125 var floor = require( '@stdlib/math/base/special/floor' ); 126 127 var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); 128 var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element 129 130 var N = floor( x0.length / 2 ); 131 132 var v = dvarm( N, 1.25, 1, x1, 2 ); 133 // returns 6.25 134 ``` 135 136 #### dvarm.ndarray( N, mean, correction, x, stride, offset ) 137 138 Computes the [variance][variance] of a double-precision floating-point strided array provided a known `mean` and using alternative indexing semantics. 139 140 ```javascript 141 var Float64Array = require( '@stdlib/array/float64' ); 142 143 var x = new Float64Array( [ 1.0, -2.0, 2.0 ] ); 144 145 var v = dvarm.ndarray( x.length, 1.0/3.0, 1, x, 1, 0 ); 146 // returns ~4.33333 147 ``` 148 149 The function has the following additional parameters: 150 151 - **offset**: starting index for `x`. 152 153 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other value in `x` starting from the second value 154 155 ```javascript 156 var Float64Array = require( '@stdlib/array/float64' ); 157 var floor = require( '@stdlib/math/base/special/floor' ); 158 159 var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); 160 var N = floor( x.length / 2 ); 161 162 var v = dvarm.ndarray( N, 1.25, 1, x, 2, 1 ); 163 // returns 6.25 164 ``` 165 166 </section> 167 168 <!-- /.usage --> 169 170 <section class="notes"> 171 172 ## Notes 173 174 - If `N <= 0`, both functions return `NaN`. 175 - If `N - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment), both functions return `NaN`. 176 177 </section> 178 179 <!-- /.notes --> 180 181 <section class="examples"> 182 183 ## Examples 184 185 <!-- eslint no-undef: "error" --> 186 187 ```javascript 188 var randu = require( '@stdlib/random/base/randu' ); 189 var round = require( '@stdlib/math/base/special/round' ); 190 var Float64Array = require( '@stdlib/array/float64' ); 191 var dvarm = require( '@stdlib/stats/base/dvarm' ); 192 193 var x; 194 var i; 195 196 x = new Float64Array( 10 ); 197 for ( i = 0; i < x.length; i++ ) { 198 x[ i ] = round( (randu()*100.0) - 50.0 ); 199 } 200 console.log( x ); 201 202 var v = dvarm( x.length, 0.0, 1, x, 1 ); 203 console.log( v ); 204 ``` 205 206 </section> 207 208 <!-- /.examples --> 209 210 <section class="references"> 211 212 </section> 213 214 <!-- /.references --> 215 216 <section class="links"> 217 218 [variance]: https://en.wikipedia.org/wiki/Variance 219 220 [@stdlib/array/float64]: https://www.npmjs.com/package/@stdlib/array-float64 221 222 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray 223 224 </section> 225 226 <!-- /.links -->