time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (8697B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2020 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # dvarm
     22 
     23 > Calculate the [variance][variance] of a double-precision floating-point strided array provided a known mean.
     24 
     25 <section class="intro">
     26 
     27 The population [variance][variance] of a finite size population of size `N` is given by
     28 
     29 <!-- <equation class="equation" label="eq:population_variance" align="center" raw="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" alt="Equation for the population variance."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" data-equation="eq:population_variance">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@79744a33483f9d23b00195aaf2d4b66614b97fac/lib/node_modules/@stdlib/stats/base/dvarm/docs/img/equation_population_variance.svg" alt="Equation for the population variance.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where the population mean is given by
     39 
     40 <!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> -->
     41 
     42 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean">
     43     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@79744a33483f9d23b00195aaf2d4b66614b97fac/lib/node_modules/@stdlib/stats/base/dvarm/docs/img/equation_population_mean.svg" alt="Equation for the population mean.">
     44     <br>
     45 </div>
     46 
     47 <!-- </equation> -->
     48 
     49 Often in the analysis of data, the true population [variance][variance] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population [variance][variance], the result is biased and yields a **biased sample variance**. To compute an **unbiased sample variance** for a sample of size `n`,
     50 
     51 <!-- <equation class="equation" label="eq:unbiased_sample_variance" align="center" raw="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" alt="Equation for computing an unbiased sample variance."> -->
     52 
     53 <div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" data-equation="eq:unbiased_sample_variance">
     54     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@79744a33483f9d23b00195aaf2d4b66614b97fac/lib/node_modules/@stdlib/stats/base/dvarm/docs/img/equation_unbiased_sample_variance.svg" alt="Equation for computing an unbiased sample variance.">
     55     <br>
     56 </div>
     57 
     58 <!-- </equation> -->
     59 
     60 where the sample mean is given by
     61 
     62 <!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> -->
     63 
     64 <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean">
     65     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@79744a33483f9d23b00195aaf2d4b66614b97fac/lib/node_modules/@stdlib/stats/base/dvarm/docs/img/equation_sample_mean.svg" alt="Equation for the sample mean.">
     66     <br>
     67 </div>
     68 
     69 <!-- </equation> -->
     70 
     71 The use of the term `n-1` is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample variance and population variance. Depending on the characteristics of the population distribution, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators.
     72 
     73 </section>
     74 
     75 <!-- /.intro -->
     76 
     77 <section class="usage">
     78 
     79 ## Usage
     80 
     81 ```javascript
     82 var dvarm = require( '@stdlib/stats/base/dvarm' );
     83 ```
     84 
     85 #### dvarm( N, mean, correction, x, stride )
     86 
     87 Computes the [variance][variance] of a double-precision floating-point strided array `x` provided a known `mean`.
     88 
     89 ```javascript
     90 var Float64Array = require( '@stdlib/array/float64' );
     91 
     92 var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
     93 
     94 var v = dvarm( x.length, 1.0/3.0, 1, x, 1 );
     95 // returns ~4.3333
     96 ```
     97 
     98 The function has the following parameters:
     99 
    100 -   **N**: number of indexed elements.
    101 -   **mean**: mean.
    102 -   **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
    103 -   **x**: input [`Float64Array`][@stdlib/array/float64].
    104 -   **stride**: index increment for `x`.
    105 
    106 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,
    107 
    108 ```javascript
    109 var Float64Array = require( '@stdlib/array/float64' );
    110 var floor = require( '@stdlib/math/base/special/floor' );
    111 
    112 var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
    113 var N = floor( x.length / 2 );
    114 
    115 var v = dvarm( N, 1.25, 1, x, 2 );
    116 // returns 6.25
    117 ```
    118 
    119 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
    120 
    121 <!-- eslint-disable stdlib/capitalized-comments -->
    122 
    123 ```javascript
    124 var Float64Array = require( '@stdlib/array/float64' );
    125 var floor = require( '@stdlib/math/base/special/floor' );
    126 
    127 var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    128 var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
    129 
    130 var N = floor( x0.length / 2 );
    131 
    132 var v = dvarm( N, 1.25, 1, x1, 2 );
    133 // returns 6.25
    134 ```
    135 
    136 #### dvarm.ndarray( N, mean, correction, x, stride, offset )
    137 
    138 Computes the [variance][variance] of a double-precision floating-point strided array provided a known `mean` and using alternative indexing semantics.
    139 
    140 ```javascript
    141 var Float64Array = require( '@stdlib/array/float64' );
    142 
    143 var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
    144 
    145 var v = dvarm.ndarray( x.length, 1.0/3.0, 1, x, 1, 0 );
    146 // returns ~4.33333
    147 ```
    148 
    149 The function has the following additional parameters:
    150 
    151 -   **offset**: starting index for `x`.
    152 
    153 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other value in `x` starting from the second value
    154 
    155 ```javascript
    156 var Float64Array = require( '@stdlib/array/float64' );
    157 var floor = require( '@stdlib/math/base/special/floor' );
    158 
    159 var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    160 var N = floor( x.length / 2 );
    161 
    162 var v = dvarm.ndarray( N, 1.25, 1, x, 2, 1 );
    163 // returns 6.25
    164 ```
    165 
    166 </section>
    167 
    168 <!-- /.usage -->
    169 
    170 <section class="notes">
    171 
    172 ## Notes
    173 
    174 -   If `N <= 0`, both functions return `NaN`.
    175 -   If `N - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment), both functions return `NaN`.
    176 
    177 </section>
    178 
    179 <!-- /.notes -->
    180 
    181 <section class="examples">
    182 
    183 ## Examples
    184 
    185 <!-- eslint no-undef: "error" -->
    186 
    187 ```javascript
    188 var randu = require( '@stdlib/random/base/randu' );
    189 var round = require( '@stdlib/math/base/special/round' );
    190 var Float64Array = require( '@stdlib/array/float64' );
    191 var dvarm = require( '@stdlib/stats/base/dvarm' );
    192 
    193 var x;
    194 var i;
    195 
    196 x = new Float64Array( 10 );
    197 for ( i = 0; i < x.length; i++ ) {
    198     x[ i ] = round( (randu()*100.0) - 50.0 );
    199 }
    200 console.log( x );
    201 
    202 var v = dvarm( x.length, 0.0, 1, x, 1 );
    203 console.log( v );
    204 ```
    205 
    206 </section>
    207 
    208 <!-- /.examples -->
    209 
    210 <section class="references">
    211 
    212 </section>
    213 
    214 <!-- /.references -->
    215 
    216 <section class="links">
    217 
    218 [variance]: https://en.wikipedia.org/wiki/Variance
    219 
    220 [@stdlib/array/float64]: https://www.npmjs.com/package/@stdlib/array-float64
    221 
    222 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
    223 
    224 </section>
    225 
    226 <!-- /.links -->