ndarray.js (2228B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MAIN // 22 23 /** 24 * Computes the variance of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer. 25 * 26 * ## Method 27 * 28 * - This implementation uses a one-pass algorithm, as proposed by Youngs and Cramer (1971). 29 * 30 * ## References 31 * 32 * - Youngs, Edward A., and Elliot M. Cramer. 1971. "Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms." _Technometrics_ 13 (3): 657–65. doi:[10.1080/00401706.1971.10488826](https://doi.org/10.1080/00401706.1971.10488826). 33 * 34 * @param {PositiveInteger} N - number of indexed elements 35 * @param {number} correction - degrees of freedom adjustment 36 * @param {Float64Array} x - input array 37 * @param {integer} stride - stride length 38 * @param {NonNegativeInteger} offset - starting index 39 * @returns {number} variance 40 * 41 * @example 42 * var Float64Array = require( '@stdlib/array/float64' ); 43 * var floor = require( '@stdlib/math/base/special/floor' ); 44 * 45 * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); 46 * var N = floor( x.length / 2 ); 47 * 48 * var v = dvarianceyc( N, 1, x, 2, 1 ); 49 * // returns 6.25 50 */ 51 function dvarianceyc( N, correction, x, stride, offset ) { 52 var sum; 53 var ix; 54 var S; 55 var v; 56 var d; 57 var n; 58 var i; 59 60 n = N - correction; 61 if ( N <= 0 || n <= 0.0 ) { 62 return NaN; 63 } 64 if ( N === 1 || stride === 0 ) { 65 return 0.0; 66 } 67 sum = x[ offset ]; 68 ix = offset + stride; 69 S = 0.0; 70 for ( i = 2; i <= N; i++ ) { 71 v = x[ ix ]; 72 sum += v; 73 d = (i*v) - sum; 74 S += (1.0/(i*(i-1))) * d * d; 75 ix += stride; 76 } 77 return S / n; 78 } 79 80 81 // EXPORTS // 82 83 module.exports = dvarianceyc;