dvarianceyc.js (2122B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MAIN // 22 23 /** 24 * Computes the variance of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer. 25 * 26 * ## Method 27 * 28 * - This implementation uses a one-pass algorithm, as proposed by Youngs and Cramer (1971). 29 * 30 * ## References 31 * 32 * - Youngs, Edward A., and Elliot M. Cramer. 1971. "Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms." _Technometrics_ 13 (3): 657–65. doi:[10.1080/00401706.1971.10488826](https://doi.org/10.1080/00401706.1971.10488826). 33 * 34 * @param {PositiveInteger} N - number of indexed elements 35 * @param {number} correction - degrees of freedom adjustment 36 * @param {Float64Array} x - input array 37 * @param {integer} stride - stride length 38 * @returns {number} variance 39 * 40 * @example 41 * var Float64Array = require( '@stdlib/array/float64' ); 42 * 43 * var x = new Float64Array( [ 1.0, -2.0, 2.0 ] ); 44 * var N = x.length; 45 * 46 * var v = dvarianceyc( N, 1, x, 1 ); 47 * // returns ~4.3333 48 */ 49 function dvarianceyc( N, correction, x, stride ) { 50 var sum; 51 var ix; 52 var S; 53 var v; 54 var d; 55 var n; 56 var i; 57 58 n = N - correction; 59 if ( N <= 0 || n <= 0.0 ) { 60 return NaN; 61 } 62 if ( N === 1 || stride === 0 ) { 63 return 0.0; 64 } 65 if ( stride < 0 ) { 66 ix = (1-N) * stride; 67 } else { 68 ix = 0; 69 } 70 sum = x[ ix ]; 71 ix += stride; 72 S = 0.0; 73 for ( i = 2; i <= N; i++ ) { 74 v = x[ ix ]; 75 sum += v; 76 d = (i*v) - sum; 77 S += (1.0/(i*(i-1))) * d * d; 78 ix += stride; 79 } 80 return S / n; 81 } 82 83 84 // EXPORTS // 85 86 module.exports = dvarianceyc;