time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

ndarray.js (1781B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MAIN //
     22 
     23 /**
     24 * Computes the variance of a double-precision floating-point strided array using a one-pass textbook algorithm.
     25 *
     26 * @param {PositiveInteger} N - number of indexed elements
     27 * @param {number} correction - degrees of freedom adjustment
     28 * @param {Float64Array} x - input array
     29 * @param {integer} stride - stride length
     30 * @param {NonNegativeInteger} offset - starting index
     31 * @returns {number} variance
     32 *
     33 * @example
     34 * var Float64Array = require( '@stdlib/array/float64' );
     35 * var floor = require( '@stdlib/math/base/special/floor' );
     36 *
     37 * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
     38 * var N = floor( x.length / 2 );
     39 *
     40 * var v = dvariancetk( N, 1, x, 2, 1 );
     41 * // returns 6.25
     42 */
     43 function dvariancetk( N, correction, x, stride, offset ) {
     44 	var S2;
     45 	var ix;
     46 	var S;
     47 	var v;
     48 	var n;
     49 	var i;
     50 
     51 	n = N - correction;
     52 	if ( N <= 0 || n <= 0.0 ) {
     53 		return NaN;
     54 	}
     55 	if ( N === 1 || stride === 0 ) {
     56 		return 0.0;
     57 	}
     58 	ix = offset;
     59 	S2 = 0.0;
     60 	S = 0.0;
     61 	for ( i = 0; i < N; i++ ) {
     62 		v = x[ ix ];
     63 		S2 += v * v;
     64 		S += v;
     65 		ix += stride;
     66 	}
     67 	return (S2 - ((S/N)*S)) / n;
     68 }
     69 
     70 
     71 // EXPORTS //
     72 
     73 module.exports = dvariancetk;