time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

ndarray.js (2726B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var dsumpw = require( '@stdlib/blas/ext/base/dsumpw' ).ndarray;
     24 
     25 
     26 // MAIN //
     27 
     28 /**
     29 * Computes the variance of a double-precision floating-point strided array using a two-pass algorithm.
     30 *
     31 * ## Method
     32 *
     33 * -   This implementation uses a two-pass approach, as suggested by Neely (1966).
     34 *
     35 * ## References
     36 *
     37 * -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
     38 * -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
     39 *
     40 * @param {PositiveInteger} N - number of indexed elements
     41 * @param {number} correction - degrees of freedom adjustment
     42 * @param {Float64Array} x - input array
     43 * @param {integer} stride - stride length
     44 * @param {NonNegativeInteger} offset - starting index
     45 * @returns {number} variance
     46 *
     47 * @example
     48 * var Float64Array = require( '@stdlib/array/float64' );
     49 * var floor = require( '@stdlib/math/base/special/floor' );
     50 *
     51 * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
     52 * var N = floor( x.length / 2 );
     53 *
     54 * var v = dvariancepn( N, 1, x, 2, 1 );
     55 * // returns 6.25
     56 */
     57 function dvariancepn( N, correction, x, stride, offset ) {
     58 	var mu;
     59 	var ix;
     60 	var M2;
     61 	var M;
     62 	var d;
     63 	var n;
     64 	var i;
     65 
     66 	n = N - correction;
     67 	if ( N <= 0 || n <= 0.0 ) {
     68 		return NaN;
     69 	}
     70 	if ( N === 1 || stride === 0 ) {
     71 		return 0.0;
     72 	}
     73 	// Compute an estimate for the mean:
     74 	mu = dsumpw( N, x, stride, offset ) / N;
     75 
     76 	// Compute the variance...
     77 	ix = offset;
     78 	M2 = 0.0;
     79 	M = 0.0;
     80 	for ( i = 0; i < N; i++ ) {
     81 		d = x[ ix ] - mu;
     82 		M2 += d * d;
     83 		M += d;
     84 		ix += stride;
     85 	}
     86 	return (M2/n) - ((M/N)*(M/n));
     87 }
     88 
     89 
     90 // EXPORTS //
     91 
     92 module.exports = dvariancepn;