dvariancepn.js (2602B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var dsumpw = require( '@stdlib/blas/ext/base/dsumpw' ); 24 25 26 // MAIN // 27 28 /** 29 * Computes the variance of a double-precision floating-point strided array using a two-pass algorithm. 30 * 31 * ## Method 32 * 33 * - This implementation uses a two-pass approach, as suggested by Neely (1966). 34 * 35 * ## References 36 * 37 * - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958). 38 * - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036). 39 * 40 * @param {PositiveInteger} N - number of indexed elements 41 * @param {number} correction - degrees of freedom adjustment 42 * @param {Float64Array} x - input array 43 * @param {integer} stride - stride length 44 * @returns {number} variance 45 * 46 * @example 47 * var Float64Array = require( '@stdlib/array/float64' ); 48 * 49 * var x = new Float64Array( [ 1.0, -2.0, 2.0 ] ); 50 * var N = x.length; 51 * 52 * var v = dvariancepn( N, 1, x, 1 ); 53 * // returns ~4.3333 54 */ 55 function dvariancepn( N, correction, x, stride ) { 56 var mu; 57 var ix; 58 var M2; 59 var M; 60 var d; 61 var n; 62 var i; 63 64 n = N - correction; 65 if ( N <= 0 || n <= 0.0 ) { 66 return NaN; 67 } 68 if ( N === 1 || stride === 0 ) { 69 return 0.0; 70 } 71 // Compute an estimate for the mean: 72 mu = dsumpw( N, x, stride ) / N; 73 74 if ( stride < 0 ) { 75 ix = (1-N) * stride; 76 } else { 77 ix = 0; 78 } 79 // Compute the variance... 80 M2 = 0.0; 81 M = 0.0; 82 for ( i = 0; i < N; i++ ) { 83 d = x[ ix ] - mu; 84 M2 += d * d; 85 M += d; 86 ix += stride; 87 } 88 return (M2/n) - ((M/N)*(M/n)); 89 } 90 91 92 // EXPORTS // 93 94 module.exports = dvariancepn;