time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

dsvariancepn.c (2560B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 #include "stdlib/stats/base/dsvariancepn.h"
     20 #include "stdlib/blas/ext/base/dssum.h"
     21 #include <stdint.h>
     22 
     23 /**
     24 * Computes the variance of a single-precision floating-point strided array using a two-pass algorithm with extended accumulation and returning an extended precision result.
     25 *
     26 * ## Method
     27 *
     28 * -   This implementation uses a two-pass approach, as suggested by Neely (1966).
     29 *
     30 * ## References
     31 *
     32 * -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
     33 * -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
     34 *
     35 * @param N           number of indexed elements
     36 * @param correction  degrees of freedom adjustment
     37 * @param X           input array
     38 * @param stride      stride length
     39 * @return            output value
     40 */
     41 double stdlib_strided_dsvariancepn( const int64_t N, const float correction, const float *X, const int64_t stride ) {
     42 	int64_t ix;
     43 	int64_t i;
     44 	double dN;
     45 	double mu;
     46 	double M2;
     47 	double M;
     48 	double n;
     49 	double d;
     50 
     51 	dN = (double)N;
     52 	n = dN - (double)correction;
     53 	if ( N <= 0 || n <= 0 ) {
     54 		return 0.0 / 0.0; // NaN
     55 	}
     56 	if ( N == 1 || stride == 0 ) {
     57 		return 0.0;
     58 	}
     59 	// Compute an estimate for the mean:
     60 	mu = stdlib_strided_dssum( N, X, stride ) / dN;
     61 
     62 	if ( stride < 0 ) {
     63 		ix = (1-N) * stride;
     64 	} else {
     65 		ix = 0;
     66 	}
     67 	// Compute the variance...
     68 	M2 = 0.0;
     69 	M = 0.0;
     70 	for ( i = 0; i < N; i++ ) {
     71 		d = (double)X[ ix ] - mu;
     72 		M2 += d * d;
     73 		M += d;
     74 		ix += stride;
     75 	}
     76 	return (M2/n) - ((M/dN)*(M/n));
     77 }