time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (8960B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2020 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # dsvariance
     22 
     23 > Calculate the [variance][variance] of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.
     24 
     25 <section class="intro">
     26 
     27 The population [variance][variance] of a finite size population of size `N` is given by
     28 
     29 <!-- <equation class="equation" label="eq:population_variance" align="center" raw="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" alt="Equation for the population variance."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" data-equation="eq:population_variance">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@8b4a42d2b11253b2a7fd4e38ad4a314502945489/lib/node_modules/@stdlib/stats/base/dsvariance/docs/img/equation_population_variance.svg" alt="Equation for the population variance.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where the population mean is given by
     39 
     40 <!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> -->
     41 
     42 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean">
     43     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@8b4a42d2b11253b2a7fd4e38ad4a314502945489/lib/node_modules/@stdlib/stats/base/dsvariance/docs/img/equation_population_mean.svg" alt="Equation for the population mean.">
     44     <br>
     45 </div>
     46 
     47 <!-- </equation> -->
     48 
     49 Often in the analysis of data, the true population [variance][variance] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population [variance][variance], the result is biased and yields a **biased sample variance**. To compute an **unbiased sample variance** for a sample of size `n`,
     50 
     51 <!-- <equation class="equation" label="eq:unbiased_sample_variance" align="center" raw="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" alt="Equation for computing an unbiased sample variance."> -->
     52 
     53 <div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" data-equation="eq:unbiased_sample_variance">
     54     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@8b4a42d2b11253b2a7fd4e38ad4a314502945489/lib/node_modules/@stdlib/stats/base/dsvariance/docs/img/equation_unbiased_sample_variance.svg" alt="Equation for computing an unbiased sample variance.">
     55     <br>
     56 </div>
     57 
     58 <!-- </equation> -->
     59 
     60 where the sample mean is given by
     61 
     62 <!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> -->
     63 
     64 <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean">
     65     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@8b4a42d2b11253b2a7fd4e38ad4a314502945489/lib/node_modules/@stdlib/stats/base/dsvariance/docs/img/equation_sample_mean.svg" alt="Equation for the sample mean.">
     66     <br>
     67 </div>
     68 
     69 <!-- </equation> -->
     70 
     71 The use of the term `n-1` is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample variance and population variance. Depending on the characteristics of the population distribution, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators.
     72 
     73 </section>
     74 
     75 <!-- /.intro -->
     76 
     77 <section class="usage">
     78 
     79 ## Usage
     80 
     81 ```javascript
     82 var dsvariance = require( '@stdlib/stats/base/dsvariance' );
     83 ```
     84 
     85 #### dsvariance( N, correction, x, stride )
     86 
     87 Computes the [variance][variance] of a single-precision floating-point strided array `x` using extended accumulation and returning an extended precision result.
     88 
     89 ```javascript
     90 var Float32Array = require( '@stdlib/array/float32' );
     91 
     92 var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
     93 var N = x.length;
     94 
     95 var v = dsvariance( N, 1, x, 1 );
     96 // returns ~4.3333
     97 ```
     98 
     99 The function has the following parameters:
    100 
    101 -   **N**: number of indexed elements.
    102 -   **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
    103 -   **x**: input [`Float32Array`][@stdlib/array/float32].
    104 -   **stride**: index increment for `x`.
    105 
    106 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,
    107 
    108 ```javascript
    109 var Float32Array = require( '@stdlib/array/float32' );
    110 var floor = require( '@stdlib/math/base/special/floor' );
    111 
    112 var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
    113 var N = floor( x.length / 2 );
    114 
    115 var v = dsvariance( N, 1, x, 2 );
    116 // returns 6.25
    117 ```
    118 
    119 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
    120 
    121 <!-- eslint-disable stdlib/capitalized-comments -->
    122 
    123 ```javascript
    124 var Float32Array = require( '@stdlib/array/float32' );
    125 var floor = require( '@stdlib/math/base/special/floor' );
    126 
    127 var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    128 var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
    129 
    130 var N = floor( x0.length / 2 );
    131 
    132 var v = dsvariance( N, 1, x1, 2 );
    133 // returns 6.25
    134 ```
    135 
    136 #### dsvariance.ndarray( N, correction, x, stride, offset )
    137 
    138 Computes the [variance][variance] of a single-precision floating-point strided array using extended accumulation and alternative indexing semantics and returning an extended precision result.
    139 
    140 ```javascript
    141 var Float32Array = require( '@stdlib/array/float32' );
    142 
    143 var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
    144 var N = x.length;
    145 
    146 var v = dsvariance.ndarray( N, 1, x, 1, 0 );
    147 // returns ~4.33333
    148 ```
    149 
    150 The function has the following additional parameters:
    151 
    152 -   **offset**: starting index for `x`.
    153 
    154 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other value in `x` starting from the second value
    155 
    156 ```javascript
    157 var Float32Array = require( '@stdlib/array/float32' );
    158 var floor = require( '@stdlib/math/base/special/floor' );
    159 
    160 var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    161 var N = floor( x.length / 2 );
    162 
    163 var v = dsvariance.ndarray( N, 1, x, 2, 1 );
    164 // returns 6.25
    165 ```
    166 
    167 </section>
    168 
    169 <!-- /.usage -->
    170 
    171 <section class="notes">
    172 
    173 ## Notes
    174 
    175 -   If `N <= 0`, both functions return `NaN`.
    176 -   If `N - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment), both functions return `NaN`.
    177 -   Accumulated intermediate values are stored as double-precision floating-point numbers. 
    178 
    179 </section>
    180 
    181 <!-- /.notes -->
    182 
    183 <section class="examples">
    184 
    185 ## Examples
    186 
    187 <!-- eslint no-undef: "error" -->
    188 
    189 ```javascript
    190 var randu = require( '@stdlib/random/base/randu' );
    191 var round = require( '@stdlib/math/base/special/round' );
    192 var Float32Array = require( '@stdlib/array/float32' );
    193 var dsvariance = require( '@stdlib/stats/base/dsvariance' );
    194 
    195 var x;
    196 var i;
    197 
    198 x = new Float32Array( 10 );
    199 for ( i = 0; i < x.length; i++ ) {
    200     x[ i ] = round( (randu()*100.0) - 50.0 );
    201 }
    202 console.log( x );
    203 
    204 var v = dsvariance( x.length, 1, x, 1 );
    205 console.log( v );
    206 ```
    207 
    208 </section>
    209 
    210 <!-- /.examples -->
    211 
    212 <section class="references">
    213 
    214 </section>
    215 
    216 <!-- /.references -->
    217 
    218 <section class="links">
    219 
    220 [variance]: https://en.wikipedia.org/wiki/Variance
    221 
    222 [@stdlib/array/float32]: https://www.npmjs.com/package/@stdlib/array-float32
    223 
    224 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
    225 
    226 </section>
    227 
    228 <!-- /.links -->