time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (10601B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2020 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # dstdevtk
     22 
     23 > Calculate the [standard deviation][standard-deviation] of a double-precision floating-point strided array using a one-pass textbook algorithm.
     24 
     25 <section class="intro">
     26 
     27 The population [standard deviation][standard-deviation] of a finite size population of size `N` is given by
     28 
     29 <!-- <equation class="equation" label="eq:population_standard_deviation" align="center" raw="\sigma = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2}" alt="Equation for the population standard deviation."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\sigma = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2}" data-equation="eq:population_standard_deviation">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@1a27628c50d5d2586aad835bd92684b37822a3c9/lib/node_modules/@stdlib/stats/base/dstdevtk/docs/img/equation_population_standard_deviation.svg" alt="Equation for the population standard deviation.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where the population mean is given by
     39 
     40 <!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> -->
     41 
     42 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean">
     43     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@1a27628c50d5d2586aad835bd92684b37822a3c9/lib/node_modules/@stdlib/stats/base/dstdevtk/docs/img/equation_population_mean.svg" alt="Equation for the population mean.">
     44     <br>
     45 </div>
     46 
     47 <!-- </equation> -->
     48 
     49 Often in the analysis of data, the true population [standard deviation][standard-deviation] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population [standard deviation][standard-deviation], the result is biased and yields an **uncorrected sample standard deviation**. To compute a **corrected sample standard deviation** for a sample of size `n`,
     50 
     51 <!-- <equation class="equation" label="eq:corrected_sample_standard_deviation" align="center" raw="s = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2}" alt="Equation for computing a corrected sample standard deviation."> -->
     52 
     53 <div class="equation" align="center" data-raw-text="s = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2}" data-equation="eq:corrected_sample_standard_deviation">
     54     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@1a27628c50d5d2586aad835bd92684b37822a3c9/lib/node_modules/@stdlib/stats/base/dstdevtk/docs/img/equation_corrected_sample_standard_deviation.svg" alt="Equation for computing a corrected sample standard deviation.">
     55     <br>
     56 </div>
     57 
     58 <!-- </equation> -->
     59 
     60 where the sample mean is given by
     61 
     62 <!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> -->
     63 
     64 <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean">
     65     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@1a27628c50d5d2586aad835bd92684b37822a3c9/lib/node_modules/@stdlib/stats/base/dstdevtk/docs/img/equation_sample_mean.svg" alt="Equation for the sample mean.">
     66     <br>
     67 </div>
     68 
     69 <!-- </equation> -->
     70 
     71 The use of the term `n-1` is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample standard deviation and population standard deviation. Depending on the characteristics of the population distribution, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators.
     72 
     73 </section>
     74 
     75 <!-- /.intro -->
     76 
     77 <section class="usage">
     78 
     79 ## Usage
     80 
     81 ```javascript
     82 var dstdevtk = require( '@stdlib/stats/base/dstdevtk' );
     83 ```
     84 
     85 #### dstdevtk( N, correction, x, stride )
     86 
     87 Computes the [standard deviation][standard-deviation] of a double-precision floating-point strided array `x` using a one-pass textbook algorithm.
     88 
     89 ```javascript
     90 var Float64Array = require( '@stdlib/array/float64' );
     91 
     92 var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
     93 var N = x.length;
     94 
     95 var v = dstdevtk( N, 1, x, 1 );
     96 // returns ~2.0817
     97 ```
     98 
     99 The function has the following parameters:
    100 
    101 -   **N**: number of indexed elements.
    102 -   **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [standard deviation][standard-deviation] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [standard deviation][standard-deviation] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample [standard deviation][standard-deviation], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
    103 -   **x**: input [`Float64Array`][@stdlib/array/float64].
    104 -   **stride**: index increment for `x`.
    105 
    106 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [standard deviation][standard-deviation] of every other element in `x`,
    107 
    108 ```javascript
    109 var Float64Array = require( '@stdlib/array/float64' );
    110 var floor = require( '@stdlib/math/base/special/floor' );
    111 
    112 var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
    113 var N = floor( x.length / 2 );
    114 
    115 var v = dstdevtk( N, 1, x, 2 );
    116 // returns 2.5
    117 ```
    118 
    119 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
    120 
    121 <!-- eslint-disable stdlib/capitalized-comments -->
    122 
    123 ```javascript
    124 var Float64Array = require( '@stdlib/array/float64' );
    125 var floor = require( '@stdlib/math/base/special/floor' );
    126 
    127 var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    128 var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
    129 
    130 var N = floor( x0.length / 2 );
    131 
    132 var v = dstdevtk( N, 1, x1, 2 );
    133 // returns 2.5
    134 ```
    135 
    136 #### dstdevtk.ndarray( N, correction, x, stride, offset )
    137 
    138 Computes the [standard deviation][standard-deviation] of a double-precision floating-point strided array using a one-pass textbook algorithm and alternative indexing semantics.
    139 
    140 ```javascript
    141 var Float64Array = require( '@stdlib/array/float64' );
    142 
    143 var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
    144 var N = x.length;
    145 
    146 var v = dstdevtk.ndarray( N, 1, x, 1, 0 );
    147 // returns ~2.0817
    148 ```
    149 
    150 The function has the following additional parameters:
    151 
    152 -   **offset**: starting index for `x`.
    153 
    154 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [standard deviation][standard-deviation] for every other value in `x` starting from the second value
    155 
    156 ```javascript
    157 var Float64Array = require( '@stdlib/array/float64' );
    158 var floor = require( '@stdlib/math/base/special/floor' );
    159 
    160 var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    161 var N = floor( x.length / 2 );
    162 
    163 var v = dstdevtk.ndarray( N, 1, x, 2, 1 );
    164 // returns 2.5
    165 ```
    166 
    167 </section>
    168 
    169 <!-- /.usage -->
    170 
    171 <section class="notes">
    172 
    173 ## Notes
    174 
    175 -   If `N <= 0`, both functions return `NaN`.
    176 -   If `N - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment), both functions return `NaN`.
    177 -   Some caution should be exercised when using the one-pass textbook algorithm. Literature overwhelmingly discourages the algorithm's use for two reasons: 1) the lack of safeguards against underflow and overflow and 2) the risk of catastrophic cancellation when subtracting the two sums if the sums are large and the variance small. These concerns have merit; however, the one-pass textbook algorithm should not be dismissed outright. For data distributions with a moderately large standard deviation to mean ratio (i.e., **coefficient of variation**), the one-pass textbook algorithm may be acceptable, especially when performance is paramount and some precision loss is acceptable (including a risk of computing a negative variance due to floating-point rounding errors!). In short, no single "best" algorithm for computing the standard deviation exists. The "best" algorithm depends on the underlying data distribution, your performance requirements, and your minimum precision requirements. When evaluating which algorithm to use, consider the relative pros and cons, and choose the algorithm which best serves your needs.
    178 
    179 </section>
    180 
    181 <!-- /.notes -->
    182 
    183 <section class="examples">
    184 
    185 ## Examples
    186 
    187 <!-- eslint no-undef: "error" -->
    188 
    189 ```javascript
    190 var randu = require( '@stdlib/random/base/randu' );
    191 var round = require( '@stdlib/math/base/special/round' );
    192 var Float64Array = require( '@stdlib/array/float64' );
    193 var dstdevtk = require( '@stdlib/stats/base/dstdevtk' );
    194 
    195 var x;
    196 var i;
    197 
    198 x = new Float64Array( 10 );
    199 for ( i = 0; i < x.length; i++ ) {
    200     x[ i ] = round( (randu()*100.0) - 50.0 );
    201 }
    202 console.log( x );
    203 
    204 var v = dstdevtk( x.length, 1, x, 1 );
    205 console.log( v );
    206 ```
    207 
    208 </section>
    209 
    210 <!-- /.examples -->
    211 
    212 * * *
    213 
    214 <section class="references">
    215 
    216 ## References
    217 
    218 -   Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154][@ling:1974a].
    219 
    220 </section>
    221 
    222 <!-- /.references -->
    223 
    224 <section class="links">
    225 
    226 [standard-deviation]: https://en.wikipedia.org/wiki/Standard_deviation
    227 
    228 [@stdlib/array/float64]: https://www.npmjs.com/package/@stdlib/array-float64
    229 
    230 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
    231 
    232 [@ling:1974a]: https://doi.org/10.2307/2286154
    233 
    234 </section>
    235 
    236 <!-- /.links -->