README.md (11055B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2020 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # dstdevch 22 23 > Calculate the [standard deviation][standard-deviation] of a double-precision floating-point strided array using a one-pass trial mean algorithm. 24 25 <section class="intro"> 26 27 The population [standard deviation][standard-deviation] of a finite size population of size `N` is given by 28 29 <!-- <equation class="equation" label="eq:population_standard_deviation" align="center" raw="\sigma = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2}" alt="Equation for the population standard deviation."> --> 30 31 <div class="equation" align="center" data-raw-text="\sigma = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2}" data-equation="eq:population_standard_deviation"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@664f0b01d3273575edb73e429ed5befd85d3d654/lib/node_modules/@stdlib/stats/base/dstdevch/docs/img/equation_population_standard_deviation.svg" alt="Equation for the population standard deviation."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where the population mean is given by 39 40 <!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> --> 41 42 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean"> 43 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@664f0b01d3273575edb73e429ed5befd85d3d654/lib/node_modules/@stdlib/stats/base/dstdevch/docs/img/equation_population_mean.svg" alt="Equation for the population mean."> 44 <br> 45 </div> 46 47 <!-- </equation> --> 48 49 Often in the analysis of data, the true population [standard deviation][standard-deviation] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population [standard deviation][standard-deviation], the result is biased and yields an **uncorrected sample standard deviation**. To compute a **corrected sample standard deviation** for a sample of size `n`, 50 51 <!-- <equation class="equation" label="eq:corrected_sample_standard_deviation" align="center" raw="s = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2}" alt="Equation for computing a corrected sample standard deviation."> --> 52 53 <div class="equation" align="center" data-raw-text="s = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2}" data-equation="eq:corrected_sample_standard_deviation"> 54 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@664f0b01d3273575edb73e429ed5befd85d3d654/lib/node_modules/@stdlib/stats/base/dstdevch/docs/img/equation_corrected_sample_standard_deviation.svg" alt="Equation for computing a corrected sample standard deviation."> 55 <br> 56 </div> 57 58 <!-- </equation> --> 59 60 where the sample mean is given by 61 62 <!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> --> 63 64 <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean"> 65 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@664f0b01d3273575edb73e429ed5befd85d3d654/lib/node_modules/@stdlib/stats/base/dstdevch/docs/img/equation_sample_mean.svg" alt="Equation for the sample mean."> 66 <br> 67 </div> 68 69 <!-- </equation> --> 70 71 The use of the term `n-1` is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample standard deviation and population standard deviation. Depending on the characteristics of the population distribution, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators. 72 73 </section> 74 75 <!-- /.intro --> 76 77 <section class="usage"> 78 79 ## Usage 80 81 ```javascript 82 var dstdevch = require( '@stdlib/stats/base/dstdevch' ); 83 ``` 84 85 #### dstdevch( N, correction, x, stride ) 86 87 Computes the [standard deviation][standard-deviation] of a double-precision floating-point strided array `x` using a one-pass trial mean algorithm. 88 89 ```javascript 90 var Float64Array = require( '@stdlib/array/float64' ); 91 92 var x = new Float64Array( [ 1.0, -2.0, 2.0 ] ); 93 var N = x.length; 94 95 var v = dstdevch( N, 1, x, 1 ); 96 // returns ~2.0817 97 ``` 98 99 The function has the following parameters: 100 101 - **N**: number of indexed elements. 102 - **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [standard deviation][standard-deviation] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [standard deviation][standard-deviation] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample [standard deviation][standard-deviation], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction). 103 - **x**: input [`Float64Array`][@stdlib/array/float64]. 104 - **stride**: index increment for `x`. 105 106 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [standard deviation][standard-deviation] of every other element in `x`, 107 108 ```javascript 109 var Float64Array = require( '@stdlib/array/float64' ); 110 var floor = require( '@stdlib/math/base/special/floor' ); 111 112 var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] ); 113 var N = floor( x.length / 2 ); 114 115 var v = dstdevch( N, 1, x, 2 ); 116 // returns 2.5 117 ``` 118 119 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views. 120 121 <!-- eslint-disable stdlib/capitalized-comments --> 122 123 ```javascript 124 var Float64Array = require( '@stdlib/array/float64' ); 125 var floor = require( '@stdlib/math/base/special/floor' ); 126 127 var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); 128 var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element 129 130 var N = floor( x0.length / 2 ); 131 132 var v = dstdevch( N, 1, x1, 2 ); 133 // returns 2.5 134 ``` 135 136 #### dstdevch.ndarray( N, correction, x, stride, offset ) 137 138 Computes the [standard deviation][standard-deviation] of a double-precision floating-point strided array using a one-pass trial mean algorithm and alternative indexing semantics. 139 140 ```javascript 141 var Float64Array = require( '@stdlib/array/float64' ); 142 143 var x = new Float64Array( [ 1.0, -2.0, 2.0 ] ); 144 var N = x.length; 145 146 var v = dstdevch.ndarray( N, 1, x, 1, 0 ); 147 // returns ~2.0817 148 ``` 149 150 The function has the following additional parameters: 151 152 - **offset**: starting index for `x`. 153 154 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [standard deviation][standard-deviation] for every other value in `x` starting from the second value 155 156 ```javascript 157 var Float64Array = require( '@stdlib/array/float64' ); 158 var floor = require( '@stdlib/math/base/special/floor' ); 159 160 var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); 161 var N = floor( x.length / 2 ); 162 163 var v = dstdevch.ndarray( N, 1, x, 2, 1 ); 164 // returns 2.5 165 ``` 166 167 </section> 168 169 <!-- /.usage --> 170 171 <section class="notes"> 172 173 ## Notes 174 175 - If `N <= 0`, both functions return `NaN`. 176 - If `N - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment), both functions return `NaN`. 177 - The underlying algorithm is a specialized case of Neely's two-pass algorithm. As the standard deviation is invariant with respect to changes in the location parameter, the underlying algorithm uses the first strided array element as a trial mean to shift subsequent data values and thus mitigate catastrophic cancellation. Accordingly, the algorithm's accuracy is best when data is **unordered** (i.e., the data is **not** sorted in either ascending or descending order such that the first value is an "extreme" value). 178 179 </section> 180 181 <!-- /.notes --> 182 183 <section class="examples"> 184 185 ## Examples 186 187 <!-- eslint no-undef: "error" --> 188 189 ```javascript 190 var randu = require( '@stdlib/random/base/randu' ); 191 var round = require( '@stdlib/math/base/special/round' ); 192 var Float64Array = require( '@stdlib/array/float64' ); 193 var dstdevch = require( '@stdlib/stats/base/dstdevch' ); 194 195 var x; 196 var i; 197 198 x = new Float64Array( 10 ); 199 for ( i = 0; i < x.length; i++ ) { 200 x[ i ] = round( (randu()*100.0) - 50.0 ); 201 } 202 console.log( x ); 203 204 var v = dstdevch( x.length, 1, x, 1 ); 205 console.log( v ); 206 ``` 207 208 </section> 209 210 <!-- /.examples --> 211 212 * * * 213 214 <section class="references"> 215 216 ## References 217 218 - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958][@neely:1966a]. 219 - Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154][@ling:1974a]. 220 - Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. 1983. "Algorithms for Computing the Sample Variance: Analysis and Recommendations." _The American Statistician_ 37 (3). American Statistical Association, Taylor & Francis, Ltd.: 242–47. doi:[10.1080/00031305.1983.10483115][@chan:1983a]. 221 - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036][@schubert:2018a]. 222 223 </section> 224 225 <!-- /.references --> 226 227 <section class="links"> 228 229 [standard-deviation]: https://en.wikipedia.org/wiki/Standard_deviation 230 231 [@stdlib/array/float64]: https://www.npmjs.com/package/@stdlib/array-float64 232 233 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray 234 235 [@neely:1966a]: https://doi.org/10.1145/365719.365958 236 237 [@ling:1974a]: https://doi.org/10.2307/2286154 238 239 [@chan:1983a]: https://doi.org/10.1080/00031305.1983.10483115 240 241 [@schubert:2018a]: https://doi.org/10.1145/3221269.3223036 242 243 </section> 244 245 <!-- /.links -->