dsnanmeanwd.js (2607B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MAIN // 22 23 /** 24 * Computes the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using Welford's algorithm with extended accumulation, and returning an extended precision result. 25 * 26 * ## Method 27 * 28 * - This implementation uses Welford's algorithm for efficient computation, which can be derived as follows 29 * 30 * ```tex 31 * \begin{align*} 32 * \mu_n &= \frac{1}{n} \sum_{i=0}^{n-1} x_i \\ 33 * &= \frac{1}{n} \biggl(x_{n-1} + \sum_{i=0}^{n-2} x_i \biggr) \\ 34 * &= \frac{1}{n} (x_{n-1} + (n-1)\mu_{n-1}) \\ 35 * &= \mu_{n-1} + \frac{1}{n} (x_{n-1} - \mu_{n-1}) 36 * \end{align*} 37 * ``` 38 * 39 * ## References 40 * 41 * - Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022](https://doi.org/10.1080/00401706.1962.10490022). 42 * - van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 149–50. doi:[10.1145/362929.362961](https://doi.org/10.1145/362929.362961). 43 * 44 * @param {PositiveInteger} N - number of indexed elements 45 * @param {Float32Array} x - input array 46 * @param {integer} stride - stride length 47 * @returns {number} arithmetic mean 48 * 49 * @example 50 * var Float32Array = require( '@stdlib/array/float32' ); 51 * 52 * var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] ); 53 * var N = x.length; 54 * 55 * var v = dsnanmeanwd( N, x, 1 ); 56 * // returns ~0.3333 57 */ 58 function dsnanmeanwd( N, x, stride ) { 59 var mu; 60 var ix; 61 var v; 62 var n; 63 var i; 64 65 if ( N <= 0 ) { 66 return NaN; 67 } 68 if ( N === 1 || stride === 0 ) { 69 return x[ 0 ]; 70 } 71 if ( stride < 0 ) { 72 ix = (1-N) * stride; 73 } else { 74 ix = 0; 75 } 76 mu = 0.0; 77 n = 0; 78 for ( i = 0; i < N; i++ ) { 79 v = x[ ix ]; 80 if ( v === v ) { 81 n += 1; 82 mu += ( v-mu ) / n; 83 } 84 ix += stride; 85 } 86 if ( n === 0 ) { 87 return NaN; 88 } 89 return mu; 90 } 91 92 93 // EXPORTS // 94 95 module.exports = dsnanmeanwd;