time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

dsnanmeanpn.c (2585B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 #include "stdlib/stats/base/dsnanmeanpn.h"
     20 #include <stdint.h>
     21 
     22 /**
     23 * Computes the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result.
     24 *
     25 * ## Method
     26 *
     27 * -   This implementation uses a two-pass approach, as suggested by Neely (1966).
     28 *
     29 * ## References
     30 *
     31 * -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
     32 * -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
     33 *
     34 * @param N       number of indexed elements
     35 * @param X       input array
     36 * @param stride  stride length
     37 * @return        output value
     38 */
     39 double stdlib_strided_dsnanmeanpn( const int64_t N, const float *X, const int64_t stride ) {
     40 	int64_t ix;
     41 	int64_t i;
     42 	int64_t n;
     43 	int64_t o;
     44 	double dn;
     45 	double s;
     46 	double t;
     47 	double v;
     48 
     49 	if ( N <= 0 ) {
     50 		return 0.0 / 0.0; // NaN
     51 	}
     52 	if ( N == 1 || stride == 0 ) {
     53 		return X[ 0 ];
     54 	}
     55 	if ( stride < 0 ) {
     56 		ix = (1-N) * stride;
     57 	} else {
     58 		ix = 0;
     59 	}
     60 	o = ix;
     61 
     62 	// Compute an estimate for the mean...
     63 	s = 0.0;
     64 	n = 0;
     65 	for ( i = 0; i < N; i++ ) {
     66 		v = (double)X[ ix ];
     67 		if ( v == v ) {
     68 			s += v;
     69 			n += 1;
     70 		}
     71 		ix += stride;
     72 	}
     73 	if ( n == 0 ) {
     74 		return 0.0 / 0.0; // NaN
     75 	}
     76 	dn = (double)n;
     77 	s /= dn;
     78 
     79 	// Compute an error term...
     80 	t = 0.0;
     81 	ix = o;
     82 	for ( i = 0; i < N; i++ ) {
     83 		v = (double)X[ ix ];
     84 		if ( v == v ) {
     85 			t += v - s;
     86 		}
     87 		ix += stride;
     88 	}
     89 	return s + (t/dn);
     90 }