time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (6342B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2020 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # dsmeanpw
     22 
     23 > Calculate the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array using pairwise summation with extended accumulation and returning an extended precision result.
     24 
     25 <section class="intro">
     26 
     27 The [arithmetic mean][arithmetic-mean] is defined as
     28 
     29 <!-- <equation class="equation" label="eq:arithmetic_mean" align="center" raw="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the arithmetic mean."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:arithmetic_mean">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@bef48a7ab1318364d0bf178f0e69d081a61688c3/lib/node_modules/@stdlib/stats/base/dsmeanpw/docs/img/equation_arithmetic_mean.svg" alt="Equation for the arithmetic mean.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 </section>
     39 
     40 <!-- /.intro -->
     41 
     42 <section class="usage">
     43 
     44 ## Usage
     45 
     46 ```javascript
     47 var dsmeanpw = require( '@stdlib/stats/base/dsmeanpw' );
     48 ```
     49 
     50 #### dsmeanpw( N, x, stride )
     51 
     52 Computes the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array `x` using pairwise summation with extended accumulation and returning an extended precision result.
     53 
     54 ```javascript
     55 var Float32Array = require( '@stdlib/array/float32' );
     56 
     57 var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
     58 var N = x.length;
     59 
     60 var v = dsmeanpw( N, x, 1 );
     61 // returns ~0.3333
     62 ```
     63 
     64 The function has the following parameters:
     65 
     66 -   **N**: number of indexed elements.
     67 -   **x**: input [`Float32Array`][@stdlib/array/float32].
     68 -   **stride**: index increment for `x`.
     69 
     70 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in `x`,
     71 
     72 ```javascript
     73 var Float32Array = require( '@stdlib/array/float32' );
     74 var floor = require( '@stdlib/math/base/special/floor' );
     75 
     76 var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
     77 var N = floor( x.length / 2 );
     78 
     79 var v = dsmeanpw( N, x, 2 );
     80 // returns 1.25
     81 ```
     82 
     83 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
     84 
     85 <!-- eslint-disable stdlib/capitalized-comments -->
     86 
     87 ```javascript
     88 var Float32Array = require( '@stdlib/array/float32' );
     89 var floor = require( '@stdlib/math/base/special/floor' );
     90 
     91 var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
     92 var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
     93 
     94 var N = floor( x0.length / 2 );
     95 
     96 var v = dsmeanpw( N, x1, 2 );
     97 // returns 1.25
     98 ```
     99 
    100 #### dsmeanpw.ndarray( N, x, stride, offset )
    101 
    102 Computes the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array using pairwise summation with extended accumulation and alternative indexing semantics and returning an extended precision result.
    103 
    104 ```javascript
    105 var Float32Array = require( '@stdlib/array/float32' );
    106 
    107 var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
    108 var N = x.length;
    109 
    110 var v = dsmeanpw.ndarray( N, x, 1, 0 );
    111 // returns ~0.33333
    112 ```
    113 
    114 The function has the following additional parameters:
    115 
    116 -   **offset**: starting index for `x`.
    117 
    118 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other value in `x` starting from the second value
    119 
    120 ```javascript
    121 var Float32Array = require( '@stdlib/array/float32' );
    122 var floor = require( '@stdlib/math/base/special/floor' );
    123 
    124 var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    125 var N = floor( x.length / 2 );
    126 
    127 var v = dsmeanpw.ndarray( N, x, 2, 1 );
    128 // returns 1.25
    129 ```
    130 
    131 </section>
    132 
    133 <!-- /.usage -->
    134 
    135 <section class="notes">
    136 
    137 ## Notes
    138 
    139 -   If `N <= 0`, both functions return `NaN`.
    140 -   Accumulated intermediate values are stored as double-precision floating-point numbers.
    141 -   In general, pairwise summation is more numerically stable than ordinary recursive summation (i.e., "simple" summation), with slightly worse performance. While not the most numerically stable summation technique (e.g., compensated summation techniques such as the Kahan–Babuška-Neumaier algorithm are generally more numerically stable), pairwise summation strikes a reasonable balance between numerical stability and performance. If either numerical stability or performance is more desirable for your use case, consider alternative summation techniques.
    142 
    143 </section>
    144 
    145 <!-- /.notes -->
    146 
    147 <section class="examples">
    148 
    149 ## Examples
    150 
    151 <!-- eslint no-undef: "error" -->
    152 
    153 ```javascript
    154 var randu = require( '@stdlib/random/base/randu' );
    155 var round = require( '@stdlib/math/base/special/round' );
    156 var Float32Array = require( '@stdlib/array/float32' );
    157 var dsmeanpw = require( '@stdlib/stats/base/dsmeanpw' );
    158 
    159 var x;
    160 var i;
    161 
    162 x = new Float32Array( 10 );
    163 for ( i = 0; i < x.length; i++ ) {
    164     x[ i ] = round( (randu()*100.0) - 50.0 );
    165 }
    166 console.log( x );
    167 
    168 var v = dsmeanpw( x.length, x, 1 );
    169 console.log( v );
    170 ```
    171 
    172 </section>
    173 
    174 <!-- /.examples -->
    175 
    176 * * *
    177 
    178 <section class="references">
    179 
    180 ## References
    181 
    182 -   Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." _SIAM Journal on Scientific Computing_ 14 (4): 783–99. doi:[10.1137/0914050][@higham:1993a].
    183 
    184 </section>
    185 
    186 <!-- /.references -->
    187 
    188 <section class="links">
    189 
    190 [arithmetic-mean]: https://en.wikipedia.org/wiki/Arithmetic_mean
    191 
    192 [@stdlib/array/float32]: https://www.npmjs.com/package/@stdlib/array-float32
    193 
    194 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
    195 
    196 [@higham:1993a]: https://doi.org/10.1137/0914050
    197 
    198 </section>
    199 
    200 <!-- /.links -->