time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

dsmeanpn.c (2294B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 #include "stdlib/stats/base/dsmeanpn.h"
     20 #include "stdlib/blas/ext/base/dssum.h"
     21 #include "stdlib/blas/ext/base/dsapxsum.h"
     22 #include <stdint.h>
     23 
     24 /**
     25 * Computes the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm with extended accumulation and returning an extended precision result.
     26 *
     27 * ## Method
     28 *
     29 * -   This implementation uses a two-pass approach, as suggested by Neely (1966).
     30 *
     31 * ## References
     32 *
     33 * -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
     34 * -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
     35 *
     36 * @param N       number of indexed elements
     37 * @param X       input array
     38 * @param stride  stride length
     39 * @return        output value
     40 */
     41 double stdlib_strided_dsmeanpn( const int64_t N, const float *X, const int64_t stride ) {
     42 	double dN;
     43 	double mu;
     44 	double c;
     45 
     46 	if ( N <= 0 ) {
     47 		return 0.0 / 0.0; // NaN
     48 	}
     49 	if ( N == 1 || stride == 0 ) {
     50 		return X[ 0 ];
     51 	}
     52 	dN = (double)N;
     53 
     54 	// Compute an estimate for the mean:
     55 	mu = stdlib_strided_dssum( N, X, stride );
     56 	mu /= dN;
     57 
     58 	// Compute an error term:
     59 	c = stdlib_strided_dsapxsum( N, -mu, X, stride );
     60 	c /= dN;
     61 
     62 	return mu + c;
     63 }