time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

ndarray.js (1712B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var dvarianceyc = require( './../../../base/dvarianceyc' ).ndarray;
     24 var sqrt = require( '@stdlib/math/base/special/sqrt' );
     25 
     26 
     27 // MAIN //
     28 
     29 /**
     30 * Computes the standard error of the mean for a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
     31 *
     32 * @param {PositiveInteger} N - number of indexed elements
     33 * @param {number} correction - degrees of freedom adjustment
     34 * @param {Float64Array} x - input array
     35 * @param {integer} stride - stride length
     36 * @param {NonNegativeInteger} offset - starting index
     37 * @returns {number} standard error of the mean
     38 *
     39 * @example
     40 * var Float64Array = require( '@stdlib/array/float64' );
     41 * var floor = require( '@stdlib/math/base/special/floor' );
     42 *
     43 * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
     44 * var N = floor( x.length / 2 );
     45 *
     46 * var v = dsemyc( N, 1, x, 2, 1 );
     47 * // returns 1.25
     48 */
     49 function dsemyc( N, correction, x, stride, offset ) {
     50 	return sqrt( dvarianceyc( N, correction, x, stride, offset ) / N );
     51 }
     52 
     53 
     54 // EXPORTS //
     55 
     56 module.exports = dsemyc;