time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (7940B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2020 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # dsemyc
     22 
     23 > Calculate the [standard error of the mean][standard-error] of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
     24 
     25 <section class="intro">
     26 
     27 The [standard error of the mean][standard-error] of a finite size sample of size `n` is given by
     28 
     29 <!-- <equation class="equation" label="eq:standard_error_of_the_mean" align="center" raw="\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}" alt="Equation for the standard error of the mean."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}" data-equation="eq:standard_error_of_the_mean">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@e541455edad5251f526b8cc13e60c7d00b4b6767/lib/node_modules/@stdlib/stats/base/dsemyc/docs/img/equation_standard_error_of_the_mean.svg" alt="Equation for the standard error of the mean.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where `σ` is the population [standard deviation][standard-deviation].
     39 
     40 Often in the analysis of data, the true population [standard deviation][standard-deviation] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. In this scenario, one must use a sample [standard deviation][standard-deviation] to compute an estimate for the [standard error of the mean][standard-error]
     41 
     42 <!-- <equation class="equation" label="eq:standard_error_of_the_mean_estimate" align="center" raw="\sigma_{\bar{x}} \approx \frac{s}{\sqrt{n}}" alt="Equation for estimating the standard error of the mean."> -->
     43 
     44 <div class="equation" align="center" data-raw-text="\sigma_{\bar{x}} \approx \frac{s}{\sqrt{n}}" data-equation="eq:standard_error_of_the_mean_estimate">
     45     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@e541455edad5251f526b8cc13e60c7d00b4b6767/lib/node_modules/@stdlib/stats/base/dsemyc/docs/img/equation_standard_error_of_the_mean_estimate.svg" alt="Equation for estimating the standard error of the mean.">
     46     <br>
     47 </div>
     48 
     49 <!-- </equation> -->
     50 
     51 where `s` is the sample [standard deviation][standard-deviation].
     52 
     53 </section>
     54 
     55 <!-- /.intro -->
     56 
     57 <section class="usage">
     58 
     59 ## Usage
     60 
     61 ```javascript
     62 var dsemyc = require( '@stdlib/stats/base/dsemyc' );
     63 ```
     64 
     65 #### dsemyc( N, correction, x, stride )
     66 
     67 Computes the [standard error of the mean][standard-error] of a double-precision floating-point strided array `x` using a one-pass algorithm proposed by Youngs and Cramer.
     68 
     69 ```javascript
     70 var Float64Array = require( '@stdlib/array/float64' );
     71 
     72 var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
     73 var N = x.length;
     74 
     75 var v = dsemyc( N, 1, x, 1 );
     76 // returns ~1.20185
     77 ```
     78 
     79 The function has the following parameters:
     80 
     81 -   **N**: number of indexed elements.
     82 -   **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [standard deviation][standard-deviation] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [standard deviation][standard-deviation] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample [standard deviation][standard-deviation], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
     83 -   **x**: input [`Float64Array`][@stdlib/array/float64].
     84 -   **stride**: index increment for `x`.
     85 
     86 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [standard error of the mean][standard-error] of every other element in `x`,
     87 
     88 ```javascript
     89 var Float64Array = require( '@stdlib/array/float64' );
     90 var floor = require( '@stdlib/math/base/special/floor' );
     91 
     92 var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
     93 var N = floor( x.length / 2 );
     94 
     95 var v = dsemyc( N, 1, x, 2 );
     96 // returns 1.25
     97 ```
     98 
     99 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
    100 
    101 <!-- eslint-disable stdlib/capitalized-comments -->
    102 
    103 ```javascript
    104 var Float64Array = require( '@stdlib/array/float64' );
    105 var floor = require( '@stdlib/math/base/special/floor' );
    106 
    107 var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    108 var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
    109 
    110 var N = floor( x0.length / 2 );
    111 
    112 var v = dsemyc( N, 1, x1, 2 );
    113 // returns 1.25
    114 ```
    115 
    116 #### dsemyc.ndarray( N, correction, x, stride, offset )
    117 
    118 Computes the [standard error of the mean][standard-error] of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer and alternative indexing semantics.
    119 
    120 ```javascript
    121 var Float64Array = require( '@stdlib/array/float64' );
    122 
    123 var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
    124 var N = x.length;
    125 
    126 var v = dsemyc.ndarray( N, 1, x, 1, 0 );
    127 // returns ~1.20185
    128 ```
    129 
    130 The function has the following additional parameters:
    131 
    132 -   **offset**: starting index for `x`.
    133 
    134 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [standard error of the mean][standard-error] for every other value in `x` starting from the second value
    135 
    136 ```javascript
    137 var Float64Array = require( '@stdlib/array/float64' );
    138 var floor = require( '@stdlib/math/base/special/floor' );
    139 
    140 var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    141 var N = floor( x.length / 2 );
    142 
    143 var v = dsemyc.ndarray( N, 1, x, 2, 1 );
    144 // returns 1.25
    145 ```
    146 
    147 </section>
    148 
    149 <!-- /.usage -->
    150 
    151 <section class="notes">
    152 
    153 ## Notes
    154 
    155 -   If `N <= 0`, both functions return `NaN`.
    156 -   If `N - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment), both functions return `NaN`.
    157 
    158 </section>
    159 
    160 <!-- /.notes -->
    161 
    162 <section class="examples">
    163 
    164 ## Examples
    165 
    166 <!-- eslint no-undef: "error" -->
    167 
    168 ```javascript
    169 var randu = require( '@stdlib/random/base/randu' );
    170 var round = require( '@stdlib/math/base/special/round' );
    171 var Float64Array = require( '@stdlib/array/float64' );
    172 var dsemyc = require( '@stdlib/stats/base/dsemyc' );
    173 
    174 var x;
    175 var i;
    176 
    177 x = new Float64Array( 10 );
    178 for ( i = 0; i < x.length; i++ ) {
    179     x[ i ] = round( (randu()*100.0) - 50.0 );
    180 }
    181 console.log( x );
    182 
    183 var v = dsemyc( x.length, 1, x, 1 );
    184 console.log( v );
    185 ```
    186 
    187 </section>
    188 
    189 <!-- /.examples -->
    190 
    191 * * *
    192 
    193 <section class="references">
    194 
    195 ## References
    196 
    197 -   Youngs, Edward A., and Elliot M. Cramer. 1971. "Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms." _Technometrics_ 13 (3): 657–65. doi:[10.1080/00401706.1971.10488826][@youngs:1971a].
    198 
    199 </section>
    200 
    201 <!-- /.references -->
    202 
    203 <section class="links">
    204 
    205 [standard-error]: https://en.wikipedia.org/wiki/Standard_error
    206 
    207 [standard-deviation]: https://en.wikipedia.org/wiki/Standard_deviation
    208 
    209 [@stdlib/array/float64]: https://www.npmjs.com/package/@stdlib/array-float64
    210 
    211 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
    212 
    213 [@youngs:1971a]: https://doi.org/10.1080/00401706.1971.10488826
    214 
    215 </section>
    216 
    217 <!-- /.links -->