time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (8978B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2020 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # dsemtk
     22 
     23 > Calculate the [standard error of the mean][standard-error] of a double-precision floating-point strided array using a one-pass textbook algorithm.
     24 
     25 <section class="intro">
     26 
     27 The [standard error of the mean][standard-error] of a finite size sample of size `n` is given by
     28 
     29 <!-- <equation class="equation" label="eq:standard_error_of_the_mean" align="center" raw="\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}" alt="Equation for the standard error of the mean."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}" data-equation="eq:standard_error_of_the_mean">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@5801695664293426455789e96b013ef4320d0569/lib/node_modules/@stdlib/stats/base/dsemtk/docs/img/equation_standard_error_of_the_mean.svg" alt="Equation for the standard error of the mean.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where `σ` is the population [standard deviation][standard-deviation].
     39 
     40 Often in the analysis of data, the true population [standard deviation][standard-deviation] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. In this scenario, one must use a sample [standard deviation][standard-deviation] to compute an estimate for the [standard error of the mean][standard-error]
     41 
     42 <!-- <equation class="equation" label="eq:standard_error_of_the_mean_estimate" align="center" raw="\sigma_{\bar{x}} \approx \frac{s}{\sqrt{n}}" alt="Equation for estimating the standard error of the mean."> -->
     43 
     44 <div class="equation" align="center" data-raw-text="\sigma_{\bar{x}} \approx \frac{s}{\sqrt{n}}" data-equation="eq:standard_error_of_the_mean_estimate">
     45     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@5801695664293426455789e96b013ef4320d0569/lib/node_modules/@stdlib/stats/base/dsemtk/docs/img/equation_standard_error_of_the_mean_estimate.svg" alt="Equation for estimating the standard error of the mean.">
     46     <br>
     47 </div>
     48 
     49 <!-- </equation> -->
     50 
     51 where `s` is the sample [standard deviation][standard-deviation].
     52 
     53 </section>
     54 
     55 <!-- /.intro -->
     56 
     57 <section class="usage">
     58 
     59 ## Usage
     60 
     61 ```javascript
     62 var dsemtk = require( '@stdlib/stats/base/dsemtk' );
     63 ```
     64 
     65 #### dsemtk( N, correction, x, stride )
     66 
     67 Computes the [standard error of the mean][standard-error] of a double-precision floating-point strided array `x` using a one-pass textbook algorithm.
     68 
     69 ```javascript
     70 var Float64Array = require( '@stdlib/array/float64' );
     71 
     72 var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
     73 var N = x.length;
     74 
     75 var v = dsemtk( N, 1, x, 1 );
     76 // returns ~1.20185
     77 ```
     78 
     79 The function has the following parameters:
     80 
     81 -   **N**: number of indexed elements.
     82 -   **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [standard deviation][standard-deviation] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [standard deviation][standard-deviation] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample [standard deviation][standard-deviation], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
     83 -   **x**: input [`Float64Array`][@stdlib/array/float64].
     84 -   **stride**: index increment for `x`.
     85 
     86 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [standard error of the mean][standard-error] of every other element in `x`,
     87 
     88 ```javascript
     89 var Float64Array = require( '@stdlib/array/float64' );
     90 var floor = require( '@stdlib/math/base/special/floor' );
     91 
     92 var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
     93 var N = floor( x.length / 2 );
     94 
     95 var v = dsemtk( N, 1, x, 2 );
     96 // returns 1.25
     97 ```
     98 
     99 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
    100 
    101 <!-- eslint-disable stdlib/capitalized-comments -->
    102 
    103 ```javascript
    104 var Float64Array = require( '@stdlib/array/float64' );
    105 var floor = require( '@stdlib/math/base/special/floor' );
    106 
    107 var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    108 var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
    109 
    110 var N = floor( x0.length / 2 );
    111 
    112 var v = dsemtk( N, 1, x1, 2 );
    113 // returns 1.25
    114 ```
    115 
    116 #### dsemtk.ndarray( N, correction, x, stride, offset )
    117 
    118 Computes the [standard error of the mean][standard-error] of a double-precision floating-point strided array using a one-pass textbook algorithm and alternative indexing semantics.
    119 
    120 ```javascript
    121 var Float64Array = require( '@stdlib/array/float64' );
    122 
    123 var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
    124 var N = x.length;
    125 
    126 var v = dsemtk.ndarray( N, 1, x, 1, 0 );
    127 // returns ~1.20185
    128 ```
    129 
    130 The function has the following additional parameters:
    131 
    132 -   **offset**: starting index for `x`.
    133 
    134 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [standard error of the mean][standard-error] for every other value in `x` starting from the second value
    135 
    136 ```javascript
    137 var Float64Array = require( '@stdlib/array/float64' );
    138 var floor = require( '@stdlib/math/base/special/floor' );
    139 
    140 var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    141 var N = floor( x.length / 2 );
    142 
    143 var v = dsemtk.ndarray( N, 1, x, 2, 1 );
    144 // returns 1.25
    145 ```
    146 
    147 </section>
    148 
    149 <!-- /.usage -->
    150 
    151 <section class="notes">
    152 
    153 ## Notes
    154 
    155 -   If `N <= 0`, both functions return `NaN`.
    156 -   If `N - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment), both functions return `NaN`.
    157 -   Some caution should be exercised when using the one-pass textbook algorithm. Literature overwhelmingly discourages the algorithm's use for two reasons: 1) the lack of safeguards against underflow and overflow and 2) the risk of catastrophic cancellation. These concerns have merit; however, the one-pass textbook algorithm should not be dismissed outright. For data distributions with a moderately large standard deviation to mean ratio (i.e., **coefficient of variation**), the one-pass textbook algorithm may be acceptable, especially when performance is paramount and some precision loss is acceptable (including a risk of computing a negative variance due to floating-point rounding errors!). In short, no single "best" algorithm for computing the standard error of the mean exists. The "best" algorithm depends on the underlying data distribution, your performance requirements, and your minimum precision requirements. When evaluating which algorithm to use, consider the relative pros and cons, and choose the algorithm which best serves your needs.
    158 
    159 </section>
    160 
    161 <!-- /.notes -->
    162 
    163 <section class="examples">
    164 
    165 ## Examples
    166 
    167 <!-- eslint no-undef: "error" -->
    168 
    169 ```javascript
    170 var randu = require( '@stdlib/random/base/randu' );
    171 var round = require( '@stdlib/math/base/special/round' );
    172 var Float64Array = require( '@stdlib/array/float64' );
    173 var dsemtk = require( '@stdlib/stats/base/dsemtk' );
    174 
    175 var x;
    176 var i;
    177 
    178 x = new Float64Array( 10 );
    179 for ( i = 0; i < x.length; i++ ) {
    180     x[ i ] = round( (randu()*100.0) - 50.0 );
    181 }
    182 console.log( x );
    183 
    184 var v = dsemtk( x.length, 1, x, 1 );
    185 console.log( v );
    186 ```
    187 
    188 </section>
    189 
    190 <!-- /.examples -->
    191 
    192 * * *
    193 
    194 <section class="references">
    195 
    196 ## References
    197 
    198 -   Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154][@ling:1974a].
    199 
    200 </section>
    201 
    202 <!-- /.references -->
    203 
    204 <section class="links">
    205 
    206 [standard-error]: https://en.wikipedia.org/wiki/Standard_error
    207 
    208 [standard-deviation]: https://en.wikipedia.org/wiki/Standard_deviation
    209 
    210 [@stdlib/array/float64]: https://www.npmjs.com/package/@stdlib/array-float64
    211 
    212 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
    213 
    214 [@ling:1974a]: https://doi.org/10.2307/2286154
    215 
    216 </section>
    217 
    218 <!-- /.links -->