time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (9499B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2020 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # dsemch
     22 
     23 > Calculate the [standard error of the mean][standard-error] of a double-precision floating-point strided array using a one-pass trial mean algorithm.
     24 
     25 <section class="intro">
     26 
     27 The [standard error of the mean][standard-error] of a finite size sample of size `n` is given by
     28 
     29 <!-- <equation class="equation" label="eq:standard_error_of_the_mean" align="center" raw="\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}" alt="Equation for the standard error of the mean."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}" data-equation="eq:standard_error_of_the_mean">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@3ebbbfc49c54971356c0cf8f6282e6720cb07755/lib/node_modules/@stdlib/stats/base/dsemch/docs/img/equation_standard_error_of_the_mean.svg" alt="Equation for the standard error of the mean.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where `σ` is the population [standard deviation][standard-deviation].
     39 
     40 Often in the analysis of data, the true population [standard deviation][standard-deviation] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. In this scenario, one must use a sample [standard deviation][standard-deviation] to compute an estimate for the [standard error of the mean][standard-error]
     41 
     42 <!-- <equation class="equation" label="eq:standard_error_of_the_mean_estimate" align="center" raw="\sigma_{\bar{x}} \approx \frac{s}{\sqrt{n}}" alt="Equation for estimating the standard error of the mean."> -->
     43 
     44 <div class="equation" align="center" data-raw-text="\sigma_{\bar{x}} \approx \frac{s}{\sqrt{n}}" data-equation="eq:standard_error_of_the_mean_estimate">
     45     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@3ebbbfc49c54971356c0cf8f6282e6720cb07755/lib/node_modules/@stdlib/stats/base/dsemch/docs/img/equation_standard_error_of_the_mean_estimate.svg" alt="Equation for estimating the standard error of the mean.">
     46     <br>
     47 </div>
     48 
     49 <!-- </equation> -->
     50 
     51 where `s` is the sample [standard deviation][standard-deviation].
     52 
     53 </section>
     54 
     55 <!-- /.intro -->
     56 
     57 <section class="usage">
     58 
     59 ## Usage
     60 
     61 ```javascript
     62 var dsemch = require( '@stdlib/stats/base/dsemch' );
     63 ```
     64 
     65 #### dsemch( N, correction, x, stride )
     66 
     67 Computes the [standard error of the mean][standard-error] of a double-precision floating-point strided array `x` using a one-pass trial mean algorithm.
     68 
     69 ```javascript
     70 var Float64Array = require( '@stdlib/array/float64' );
     71 
     72 var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
     73 var N = x.length;
     74 
     75 var v = dsemch( N, 1, x, 1 );
     76 // returns ~1.20185
     77 ```
     78 
     79 The function has the following parameters:
     80 
     81 -   **N**: number of indexed elements.
     82 -   **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [standard deviation][standard-deviation] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [standard deviation][standard-deviation] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample [standard deviation][standard-deviation], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
     83 -   **x**: input [`Float64Array`][@stdlib/array/float64].
     84 -   **stride**: index increment for `x`.
     85 
     86 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [standard error of the mean][standard-error] of every other element in `x`,
     87 
     88 ```javascript
     89 var Float64Array = require( '@stdlib/array/float64' );
     90 var floor = require( '@stdlib/math/base/special/floor' );
     91 
     92 var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
     93 var N = floor( x.length / 2 );
     94 
     95 var v = dsemch( N, 1, x, 2 );
     96 // returns 1.25
     97 ```
     98 
     99 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
    100 
    101 <!-- eslint-disable stdlib/capitalized-comments -->
    102 
    103 ```javascript
    104 var Float64Array = require( '@stdlib/array/float64' );
    105 var floor = require( '@stdlib/math/base/special/floor' );
    106 
    107 var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    108 var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
    109 
    110 var N = floor( x0.length / 2 );
    111 
    112 var v = dsemch( N, 1, x1, 2 );
    113 // returns 1.25
    114 ```
    115 
    116 #### dsemch.ndarray( N, correction, x, stride, offset )
    117 
    118 Computes the [standard error of the mean][standard-error] of a double-precision floating-point strided array using a one-pass trial mean algorithm and alternative indexing semantics.
    119 
    120 ```javascript
    121 var Float64Array = require( '@stdlib/array/float64' );
    122 
    123 var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
    124 var N = x.length;
    125 
    126 var v = dsemch.ndarray( N, 1, x, 1, 0 );
    127 // returns ~1.20185
    128 ```
    129 
    130 The function has the following additional parameters:
    131 
    132 -   **offset**: starting index for `x`.
    133 
    134 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [standard error of the mean][standard-error] for every other value in `x` starting from the second value
    135 
    136 ```javascript
    137 var Float64Array = require( '@stdlib/array/float64' );
    138 var floor = require( '@stdlib/math/base/special/floor' );
    139 
    140 var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    141 var N = floor( x.length / 2 );
    142 
    143 var v = dsemch.ndarray( N, 1, x, 2, 1 );
    144 // returns 1.25
    145 ```
    146 
    147 </section>
    148 
    149 <!-- /.usage -->
    150 
    151 <section class="notes">
    152 
    153 ## Notes
    154 
    155 -   If `N <= 0`, both functions return `NaN`.
    156 -   If `N - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment), both functions return `NaN`.
    157 -   The underlying algorithm is a specialized case of Neely's two-pass algorithm. As the standard deviation is invariant with respect to changes in the location parameter, the underlying algorithm uses the first strided array element as a trial mean to shift subsequent data values and thus mitigate catastrophic cancellation. Accordingly, the algorithm's accuracy is best when data is **unordered** (i.e., the data is **not** sorted in either ascending or descending order such that the first value is an "extreme" value).
    158 
    159 </section>
    160 
    161 <!-- /.notes -->
    162 
    163 <section class="examples">
    164 
    165 ## Examples
    166 
    167 <!-- eslint no-undef: "error" -->
    168 
    169 ```javascript
    170 var randu = require( '@stdlib/random/base/randu' );
    171 var round = require( '@stdlib/math/base/special/round' );
    172 var Float64Array = require( '@stdlib/array/float64' );
    173 var dsemch = require( '@stdlib/stats/base/dsemch' );
    174 
    175 var x;
    176 var i;
    177 
    178 x = new Float64Array( 10 );
    179 for ( i = 0; i < x.length; i++ ) {
    180     x[ i ] = round( (randu()*100.0) - 50.0 );
    181 }
    182 console.log( x );
    183 
    184 var v = dsemch( x.length, 1, x, 1 );
    185 console.log( v );
    186 ```
    187 
    188 </section>
    189 
    190 <!-- /.examples -->
    191 
    192 * * *
    193 
    194 <section class="references">
    195 
    196 ## References
    197 
    198 -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958][@neely:1966a].
    199 -   Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154][@ling:1974a].
    200 -   Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. 1983. "Algorithms for Computing the Sample Variance: Analysis and Recommendations." _The American Statistician_ 37 (3). American Statistical Association, Taylor & Francis, Ltd.: 242–47. doi:[10.1080/00031305.1983.10483115][@chan:1983a].
    201 -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036][@schubert:2018a].
    202 
    203 </section>
    204 
    205 <!-- /.references -->
    206 
    207 <section class="links">
    208 
    209 [standard-error]: https://en.wikipedia.org/wiki/Standard_error
    210 
    211 [standard-deviation]: https://en.wikipedia.org/wiki/Standard_deviation
    212 
    213 [@stdlib/array/float64]: https://www.npmjs.com/package/@stdlib/array-float64
    214 
    215 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
    216 
    217 [@neely:1966a]: https://doi.org/10.1145/365719.365958
    218 
    219 [@ling:1974a]: https://doi.org/10.2307/2286154
    220 
    221 [@chan:1983a]: https://doi.org/10.1080/00031305.1983.10483115
    222 
    223 [@schubert:2018a]: https://doi.org/10.1145/3221269.3223036
    224 
    225 </section>
    226 
    227 <!-- /.links -->