dnanvarianceyc.js (2484B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MAIN // 22 23 /** 24 * Computes the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer. 25 * 26 * ## Method 27 * 28 * - This implementation uses a one-pass algorithm, as proposed by Youngs and Cramer (1971). 29 * 30 * ## References 31 * 32 * - Youngs, Edward A., and Elliot M. Cramer. 1971. "Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms." _Technometrics_ 13 (3): 657–65. doi:[10.1080/00401706.1971.10488826](https://doi.org/10.1080/00401706.1971.10488826). 33 * 34 * @param {PositiveInteger} N - number of indexed elements 35 * @param {number} correction - degrees of freedom adjustment 36 * @param {Float64Array} x - input array 37 * @param {integer} stride - stride length 38 * @returns {number} variance 39 * 40 * @example 41 * var Float64Array = require( '@stdlib/array/float64' ); 42 * 43 * var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] ); 44 * var N = x.length; 45 * 46 * var v = dnanvarianceyc( N, 1, x, 1 ); 47 * // returns ~4.3333 48 */ 49 function dnanvarianceyc( N, correction, x, stride ) { 50 var sum; 51 var ix; 52 var nc; 53 var S; 54 var v; 55 var d; 56 var n; 57 var i; 58 59 if ( N <= 0 ) { 60 return NaN; 61 } 62 if ( N === 1 || stride === 0 ) { 63 v = x[ 0 ]; 64 if ( v === v && N-correction > 0.0 ) { 65 return 0.0; 66 } 67 return NaN; 68 } 69 if ( stride < 0 ) { 70 ix = (1-N) * stride; 71 } else { 72 ix = 0; 73 } 74 // Find the first non-NaN element... 75 for ( i = 0; i < N; i++ ) { 76 v = x[ ix ]; 77 if ( v === v ) { 78 break; 79 } 80 ix += stride; 81 } 82 if ( i === N ) { 83 return NaN; 84 } 85 ix += stride; 86 sum = v; 87 S = 0.0; 88 i += 1; 89 n = 1; 90 for ( i; i < N; i++ ) { 91 v = x[ ix ]; 92 if ( v === v ) { 93 n += 1; 94 sum += v; 95 d = (n*v) - sum; 96 S += (1.0/(n*(n-1))) * d * d; 97 } 98 ix += stride; 99 } 100 nc = n - correction; 101 if ( nc <= 0.0 ) { 102 return NaN; 103 } 104 return S / nc; 105 } 106 107 108 // EXPORTS // 109 110 module.exports = dnanvarianceyc;