ndarray.js (2477B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MAIN // 22 23 /** 24 * Computes the variance of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm. 25 * 26 * ## References 27 * 28 * - Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022](https://doi.org/10.1080/00401706.1962.10490022). 29 * - van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 149–50. doi:[10.1145/362929.362961](https://doi.org/10.1145/362929.362961). 30 * 31 * @param {PositiveInteger} N - number of indexed elements 32 * @param {number} correction - degrees of freedom adjustment 33 * @param {Float64Array} x - input array 34 * @param {integer} stride - stride length 35 * @param {NonNegativeInteger} offset - starting index 36 * @returns {number} variance 37 * 38 * @example 39 * var Float64Array = require( '@stdlib/array/float64' ); 40 * var floor = require( '@stdlib/math/base/special/floor' ); 41 * 42 * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] ); 43 * var N = floor( x.length / 2 ); 44 * 45 * var v = dnanvariancewd( N, 1, x, 2, 1 ); 46 * // returns 6.25 47 */ 48 function dnanvariancewd( N, correction, x, stride, offset ) { 49 var delta; 50 var mu; 51 var M2; 52 var ix; 53 var nc; 54 var v; 55 var n; 56 var i; 57 58 if ( N <= 0 ) { 59 return NaN; 60 } 61 if ( N === 1 || stride === 0 ) { 62 v = x[ offset ]; 63 if ( v === v && N-correction > 0.0 ) { 64 return 0.0; 65 } 66 return NaN; 67 } 68 ix = offset; 69 M2 = 0.0; 70 mu = 0.0; 71 n = 0; 72 for ( i = 0; i < N; i++ ) { 73 v = x[ ix ]; 74 if ( v === v ) { 75 delta = v - mu; 76 n += 1; 77 mu += delta / n; 78 M2 += delta * ( v - mu ); 79 } 80 ix += stride; 81 } 82 nc = n - correction; 83 if ( nc <= 0.0 ) { 84 return NaN; 85 } 86 return M2 / nc; 87 } 88 89 90 // EXPORTS // 91 92 module.exports = dnanvariancewd;