dnanvariancewd.js (2359B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MAIN // 22 23 /** 24 * Computes the variance of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm. 25 * 26 * ## References 27 * 28 * - Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022](https://doi.org/10.1080/00401706.1962.10490022). 29 * - van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 149–50. doi:[10.1145/362929.362961](https://doi.org/10.1145/362929.362961). 30 * 31 * @param {PositiveInteger} N - number of indexed elements 32 * @param {number} correction - degrees of freedom adjustment 33 * @param {Float64Array} x - input array 34 * @param {integer} stride - stride length 35 * @returns {number} variance 36 * 37 * @example 38 * var Float64Array = require( '@stdlib/array/float64' ); 39 * 40 * var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] ); 41 * var N = x.length; 42 * 43 * var v = dnanvariancewd( N, 1, x, 1 ); 44 * // returns ~4.3333 45 */ 46 function dnanvariancewd( N, correction, x, stride ) { 47 var delta; 48 var mu; 49 var M2; 50 var ix; 51 var nc; 52 var v; 53 var n; 54 var i; 55 56 if ( N <= 0 ) { 57 return NaN; 58 } 59 if ( N === 1 || stride === 0 ) { 60 v = x[ 0 ]; 61 if ( v === v && N-correction > 0.0 ) { 62 return 0.0; 63 } 64 return NaN; 65 } 66 if ( stride < 0 ) { 67 ix = (1-N) * stride; 68 } else { 69 ix = 0; 70 } 71 M2 = 0.0; 72 mu = 0.0; 73 n = 0; 74 for ( i = 0; i < N; i++ ) { 75 v = x[ ix ]; 76 if ( v === v ) { 77 delta = v - mu; 78 n += 1; 79 mu += delta / n; 80 M2 += delta * ( v - mu ); 81 } 82 ix += stride; 83 } 84 nc = n - correction; 85 if ( nc <= 0.0 ) { 86 return NaN; 87 } 88 return M2 / nc; 89 } 90 91 92 // EXPORTS // 93 94 module.exports = dnanvariancewd;