ndarray.js (1985B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MAIN // 22 23 /** 24 * Computes the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm. 25 * 26 * @param {PositiveInteger} N - number of indexed elements 27 * @param {number} correction - degrees of freedom adjustment 28 * @param {Float64Array} x - input array 29 * @param {integer} stride - stride length 30 * @param {NonNegativeInteger} offset - starting index 31 * @returns {number} variance 32 * 33 * @example 34 * var Float64Array = require( '@stdlib/array/float64' ); 35 * var floor = require( '@stdlib/math/base/special/floor' ); 36 * 37 * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] ); 38 * var N = floor( x.length / 2 ); 39 * 40 * var v = dnanvariancetk( N, 1, x, 2, 1 ); 41 * // returns 6.25 42 */ 43 function dnanvariancetk( N, correction, x, stride, offset ) { 44 var S2; 45 var ix; 46 var nc; 47 var S; 48 var v; 49 var n; 50 var i; 51 52 if ( N <= 0 ) { 53 return NaN; 54 } 55 if ( N === 1 || stride === 0 ) { 56 v = x[ offset ]; 57 if ( v === v && N-correction > 0.0 ) { 58 return 0.0; 59 } 60 return NaN; 61 } 62 ix = offset; 63 S2 = 0.0; 64 S = 0.0; 65 n = 0; 66 for ( i = 0; i < N; i++ ) { 67 v = x[ ix ]; 68 if ( v === v ) { 69 S2 += v * v; 70 S += v; 71 n += 1; 72 } 73 ix += stride; 74 } 75 nc = n - correction; 76 if ( nc <= 0.0 ) { 77 return NaN; 78 } 79 return (S2 - ((S/n)*S)) / nc; 80 } 81 82 83 // EXPORTS // 84 85 module.exports = dnanvariancetk;