ndarray.js (3056B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var dnansumpw = require( './dnansumpw.js' ); 24 25 26 // VARIABLES // 27 28 var WORKSPACE = [ 0.0, 0 ]; 29 30 31 // MAIN // 32 33 /** 34 * Computes the variance of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm. 35 * 36 * ## Method 37 * 38 * - This implementation uses a two-pass approach, as suggested by Neely (1966). 39 * 40 * ## References 41 * 42 * - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958). 43 * - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036). 44 * 45 * @param {PositiveInteger} N - number of indexed elements 46 * @param {number} correction - degrees of freedom adjustment 47 * @param {Float64Array} x - input array 48 * @param {integer} stride - stride length 49 * @param {NonNegativeInteger} offset - starting index 50 * @returns {number} variance 51 * 52 * @example 53 * var Float64Array = require( '@stdlib/array/float64' ); 54 * var floor = require( '@stdlib/math/base/special/floor' ); 55 * 56 * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] ); 57 * var N = floor( x.length / 2 ); 58 * 59 * var v = dnanvariancepn( N, 1, x, 2, 1 ); 60 * // returns 6.25 61 */ 62 function dnanvariancepn( N, correction, x, stride, offset ) { 63 var mu; 64 var ix; 65 var M2; 66 var nc; 67 var M; 68 var d; 69 var v; 70 var n; 71 var i; 72 73 if ( N <= 0 ) { 74 return NaN; 75 } 76 if ( N === 1 || stride === 0 ) { 77 v = x[ offset ]; 78 if ( v === v && N-correction > 0.0 ) { 79 return 0.0; 80 } 81 return NaN; 82 } 83 // Compute an estimate for the mean... 84 WORKSPACE[ 0 ] = 0.0; 85 WORKSPACE[ 1 ] = 0; 86 dnansumpw( N, WORKSPACE, x, stride, offset ); 87 n = WORKSPACE[ 1 ]; 88 nc = n - correction; 89 if ( nc <= 0.0 ) { 90 return NaN; 91 } 92 mu = WORKSPACE[ 0 ] / n; 93 94 // Compute the variance... 95 ix = offset; 96 M2 = 0.0; 97 M = 0.0; 98 for ( i = 0; i < N; i++ ) { 99 v = x[ ix ]; 100 if ( v === v ) { 101 d = v - mu; 102 M2 += d * d; 103 M += d; 104 } 105 ix += stride; 106 } 107 return (M2/nc) - ((M/n)*(M/nc)); 108 } 109 110 111 // EXPORTS // 112 113 module.exports = dnanvariancepn;