time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

dnanvariancech.c (3451B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 #include "stdlib/stats/base/dnanvariancech.h"
     20 #include <stdint.h>
     21 
     22 /**
     23 * Computes the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
     24 *
     25 * ## Method
     26 *
     27 * -   This implementation uses a one-pass trial mean approach, as suggested by Chan et al (1983).
     28 *
     29 * ## References
     30 *
     31 * -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
     32 * -   Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154](https://doi.org/10.2307/2286154).
     33 * -   Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. 1983. "Algorithms for Computing the Sample Variance: Analysis and Recommendations." _The American Statistician_ 37 (3). American Statistical Association, Taylor & Francis, Ltd.: 242–47. doi:[10.1080/00031305.1983.10483115](https://doi.org/10.1080/00031305.1983.10483115).
     34 * -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
     35 *
     36 * @param N           number of indexed elements
     37 * @param correction  degrees of freedom adjustment
     38 * @param X           input array
     39 * @param stride      stride length
     40 * @return            output value
     41 */
     42 double stdlib_strided_dnanvariancech( const int64_t N, const double correction, const double *X, const int64_t stride ) {
     43 	int64_t ix;
     44 	int64_t n;
     45 	int64_t i;
     46 	double M2;
     47 	double mu;
     48 	double nc;
     49 	double dn;
     50 	double M;
     51 	double d;
     52 	double v;
     53 
     54 	if ( N <= 0 ) {
     55 		return 0.0 / 0.0; // NaN
     56 	}
     57 	if ( N == 1 || stride == 0 ) {
     58 		v = X[ 0 ];
     59 		if ( v == v && (double)N-correction > 0.0 ) {
     60 			return 0.0;
     61 		}
     62 		return 0.0 / 0.0; // NaN
     63 	}
     64 	if ( stride < 0 ) {
     65 		ix = (1-N) * stride;
     66 	} else {
     67 		ix = 0;
     68 	}
     69 	// Find an estimate for the mean...
     70 	for ( i = 0; i < N; i++ ) {
     71 		v = X[ ix ];
     72 		if ( v == v ) {
     73 			mu = v;
     74 			break;
     75 		}
     76 		ix += stride;
     77 	}
     78 	if ( i == N ) {
     79 		return 0.0 / 0.0; // NaN
     80 	}
     81 	ix += stride;
     82 	i += 1;
     83 
     84 	// Compute the variance...
     85 	M2 = 0.0;
     86 	M = 0.0;
     87 	n = 1;
     88 	for (; i < N; i++ ) {
     89 		v = X[ ix ];
     90 		if ( v == v ) {
     91 			d = v - mu;
     92 			M2 += d * d;
     93 			M += d;
     94 			n += 1;
     95 		}
     96 		ix += stride;
     97 	}
     98 	dn = (double)n;
     99 	nc = dn - correction;
    100 	if ( nc <= 0.0 ) {
    101 		return 0.0 / 0.0; // NaN
    102 	}
    103 	return (M2/nc) - ((M/dn)*(M/nc));
    104 }