dnanvariancech.js (3519B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MAIN // 22 23 /** 24 * Computes the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm. 25 * 26 * ## Method 27 * 28 * - This implementation uses a one-pass trial mean approach, as suggested by Chan et al (1983). 29 * 30 * ## References 31 * 32 * - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958). 33 * - Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154](https://doi.org/10.2307/2286154). 34 * - Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. 1983. "Algorithms for Computing the Sample Variance: Analysis and Recommendations." _The American Statistician_ 37 (3). American Statistical Association, Taylor & Francis, Ltd.: 242–47. doi:[10.1080/00031305.1983.10483115](https://doi.org/10.1080/00031305.1983.10483115). 35 * - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036). 36 * 37 * @param {PositiveInteger} N - number of indexed elements 38 * @param {number} correction - degrees of freedom adjustment 39 * @param {Float64Array} x - input array 40 * @param {integer} stride - stride length 41 * @returns {number} variance 42 * 43 * @example 44 * var Float64Array = require( '@stdlib/array/float64' ); 45 * 46 * var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] ); 47 * var N = x.length; 48 * 49 * var v = dnanvariancech( N, 1, x, 1 ); 50 * // returns ~4.3333 51 */ 52 function dnanvariancech( N, correction, x, stride ) { 53 var mu; 54 var ix; 55 var M2; 56 var nc; 57 var M; 58 var d; 59 var v; 60 var n; 61 var i; 62 63 if ( N <= 0 ) { 64 return NaN; 65 } 66 if ( N === 1 || stride === 0 ) { 67 v = x[ 0 ]; 68 if ( v === v && N-correction > 0.0 ) { 69 return 0.0; 70 } 71 return NaN; 72 } 73 if ( stride < 0 ) { 74 ix = (1-N) * stride; 75 } else { 76 ix = 0; 77 } 78 // Find an estimate for the mean... 79 for ( i = 0; i < N; i++ ) { 80 v = x[ ix ]; 81 if ( v === v ) { 82 mu = v; 83 break; 84 } 85 ix += stride; 86 } 87 if ( i === N ) { 88 return NaN; 89 } 90 ix += stride; 91 i += 1; 92 93 // Compute the variance... 94 M2 = 0.0; 95 M = 0.0; 96 n = 1; 97 for ( i; i < N; i++ ) { 98 v = x[ ix ]; 99 if ( v === v ) { 100 d = v - mu; 101 M2 += d * d; 102 M += d; 103 n += 1; 104 } 105 ix += stride; 106 } 107 nc = n - correction; 108 if ( nc <= 0.0 ) { 109 return NaN; 110 } 111 return (M2/nc) - ((M/n)*(M/nc)); 112 } 113 114 115 // EXPORTS // 116 117 module.exports = dnanvariancech;