README.md (8887B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2020 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # dnanvariance 22 23 > Calculate the [variance][variance] of a double-precision floating-point strided array ignoring `NaN` values. 24 25 <section class="intro"> 26 27 The population [variance][variance] of a finite size population of size `N` is given by 28 29 <!-- <equation class="equation" label="eq:population_variance" align="center" raw="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" alt="Equation for the population variance."> --> 30 31 <div class="equation" align="center" data-raw-text="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" data-equation="eq:population_variance"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@53ca1c753aa4ce5ae122bc33a8640a4ed25155f7/lib/node_modules/@stdlib/stats/base/dnanvariance/docs/img/equation_population_variance.svg" alt="Equation for the population variance."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where the population mean is given by 39 40 <!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> --> 41 42 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean"> 43 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@53ca1c753aa4ce5ae122bc33a8640a4ed25155f7/lib/node_modules/@stdlib/stats/base/dnanvariance/docs/img/equation_population_mean.svg" alt="Equation for the population mean."> 44 <br> 45 </div> 46 47 <!-- </equation> --> 48 49 Often in the analysis of data, the true population [variance][variance] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population [variance][variance], the result is biased and yields a **biased sample variance**. To compute an **unbiased sample variance** for a sample of size `n`, 50 51 <!-- <equation class="equation" label="eq:unbiased_sample_variance" align="center" raw="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" alt="Equation for computing an unbiased sample variance."> --> 52 53 <div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" data-equation="eq:unbiased_sample_variance"> 54 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@53ca1c753aa4ce5ae122bc33a8640a4ed25155f7/lib/node_modules/@stdlib/stats/base/dnanvariance/docs/img/equation_unbiased_sample_variance.svg" alt="Equation for computing an unbiased sample variance."> 55 <br> 56 </div> 57 58 <!-- </equation> --> 59 60 where the sample mean is given by 61 62 <!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> --> 63 64 <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean"> 65 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@53ca1c753aa4ce5ae122bc33a8640a4ed25155f7/lib/node_modules/@stdlib/stats/base/dnanvariance/docs/img/equation_sample_mean.svg" alt="Equation for the sample mean."> 66 <br> 67 </div> 68 69 <!-- </equation> --> 70 71 The use of the term `n-1` is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample variance and population variance. Depending on the characteristics of the population distribution, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators. 72 73 </section> 74 75 <!-- /.intro --> 76 77 <section class="usage"> 78 79 ## Usage 80 81 ```javascript 82 var dnanvariance = require( '@stdlib/stats/base/dnanvariance' ); 83 ``` 84 85 #### dnanvariance( N, correction, x, stride ) 86 87 Computes the [variance][variance] of a double-precision floating-point strided array `x` ignoring `NaN` values. 88 89 ```javascript 90 var Float64Array = require( '@stdlib/array/float64' ); 91 92 var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] ); 93 94 var v = dnanvariance( x.length, 1, x, 1 ); 95 // returns ~4.3333 96 ``` 97 98 The function has the following parameters: 99 100 - **N**: number of indexed elements. 101 - **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `n-c` where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction). 102 - **x**: input [`Float64Array`][@stdlib/array/float64]. 103 - **stride**: index increment for `x`. 104 105 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`, 106 107 ```javascript 108 var Float64Array = require( '@stdlib/array/float64' ); 109 var floor = require( '@stdlib/math/base/special/floor' ); 110 111 var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] ); 112 var N = floor( x.length / 2 ); 113 114 var v = dnanvariance( N, 1, x, 2 ); 115 // returns 6.25 116 ``` 117 118 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views. 119 120 <!-- eslint-disable stdlib/capitalized-comments --> 121 122 ```javascript 123 var Float64Array = require( '@stdlib/array/float64' ); 124 var floor = require( '@stdlib/math/base/special/floor' ); 125 126 var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] ); 127 var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element 128 129 var N = floor( x0.length / 2 ); 130 131 var v = dnanvariance( N, 1, x1, 2 ); 132 // returns 6.25 133 ``` 134 135 #### dnanvariance.ndarray( N, correction, x, stride, offset ) 136 137 Computes the [variance][variance] of a double-precision floating-point strided array ignoring `NaN` values and using alternative indexing semantics. 138 139 ```javascript 140 var Float64Array = require( '@stdlib/array/float64' ); 141 142 var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] ); 143 144 var v = dnanvariance.ndarray( x.length, 1, x, 1, 0 ); 145 // returns ~4.33333 146 ``` 147 148 The function has the following additional parameters: 149 150 - **offset**: starting index for `x`. 151 152 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other value in `x` starting from the second value 153 154 ```javascript 155 var Float64Array = require( '@stdlib/array/float64' ); 156 var floor = require( '@stdlib/math/base/special/floor' ); 157 158 var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); 159 var N = floor( x.length / 2 ); 160 161 var v = dnanvariance.ndarray( N, 1, x, 2, 1 ); 162 // returns 6.25 163 ``` 164 165 </section> 166 167 <!-- /.usage --> 168 169 <section class="notes"> 170 171 ## Notes 172 173 - If `N <= 0`, both functions return `NaN`. 174 - If `n - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements), both functions return `NaN`. 175 176 </section> 177 178 <!-- /.notes --> 179 180 <section class="examples"> 181 182 ## Examples 183 184 <!-- eslint no-undef: "error" --> 185 186 ```javascript 187 var randu = require( '@stdlib/random/base/randu' ); 188 var round = require( '@stdlib/math/base/special/round' ); 189 var Float64Array = require( '@stdlib/array/float64' ); 190 var dnanvariance = require( '@stdlib/stats/base/dnanvariance' ); 191 192 var x; 193 var i; 194 195 x = new Float64Array( 10 ); 196 for ( i = 0; i < x.length; i++ ) { 197 x[ i ] = round( (randu()*100.0) - 50.0 ); 198 } 199 console.log( x ); 200 201 var v = dnanvariance( x.length, 1, x, 1 ); 202 console.log( v ); 203 ``` 204 205 </section> 206 207 <!-- /.examples --> 208 209 <section class="references"> 210 211 </section> 212 213 <!-- /.references --> 214 215 <section class="links"> 216 217 [variance]: https://en.wikipedia.org/wiki/Variance 218 219 [@stdlib/array/float64]: https://www.npmjs.com/package/@stdlib/array-float64 220 221 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray 222 223 </section> 224 225 <!-- /.links -->