ndarray.js (2649B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MAIN // 22 23 /** 24 * Computes the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoring `NaN` values. 25 * 26 * ## Method 27 * 28 * - This implementation uses Welford's algorithm for efficient computation, which can be derived as follows 29 * 30 * ```tex 31 * \begin{align*} 32 * \mu_n &= \frac{1}{n} \sum_{i=0}^{n-1} x_i \\ 33 * &= \frac{1}{n} \biggl(x_{n-1} + \sum_{i=0}^{n-2} x_i \biggr) \\ 34 * &= \frac{1}{n} (x_{n-1} + (n-1)\mu_{n-1}) \\ 35 * &= \mu_{n-1} + \frac{1}{n} (x_{n-1} - \mu_{n-1}) 36 * \end{align*} 37 * ``` 38 * 39 * ## References 40 * 41 * - Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022](https://doi.org/10.1080/00401706.1962.10490022). 42 * - van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 149–50. doi:[10.1145/362929.362961](https://doi.org/10.1145/362929.362961). 43 * 44 * @param {PositiveInteger} N - number of indexed elements 45 * @param {Float64Array} x - input array 46 * @param {integer} stride - stride length 47 * @param {NonNegativeInteger} offset - starting index 48 * @returns {number} arithmetic mean 49 * 50 * @example 51 * var Float64Array = require( '@stdlib/array/float64' ); 52 * var floor = require( '@stdlib/math/base/special/floor' ); 53 * 54 * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] ); 55 * var N = floor( x.length / 2 ); 56 * 57 * var v = dnanmeanwd( N, x, 2, 1 ); 58 * // returns 1.25 59 */ 60 function dnanmeanwd( N, x, stride, offset ) { 61 var mu; 62 var ix; 63 var v; 64 var n; 65 var i; 66 67 if ( N <= 0 ) { 68 return NaN; 69 } 70 if ( N === 1 || stride === 0 ) { 71 return x[ offset ]; 72 } 73 ix = offset; 74 mu = 0.0; 75 n = 0; 76 for ( i = 0; i < N; i++ ) { 77 v = x[ ix ]; 78 if ( v === v ) { 79 n += 1; 80 mu += ( v-mu ) / n; 81 } 82 ix += stride; 83 } 84 if ( n === 0 ) { 85 return NaN; 86 } 87 return mu; 88 } 89 90 91 // EXPORTS // 92 93 module.exports = dnanmeanwd;