time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

dnansumpw.js (4422B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     24 var floor = require( '@stdlib/math/base/special/floor' );
     25 
     26 
     27 // VARIABLES //
     28 
     29 // Blocksize for pairwise summation (NOTE: decreasing the blocksize decreases rounding error as more pairs are summed, but also decreases performance. Because the inner loop is unrolled eight times, the blocksize is effectively `16`.):
     30 var BLOCKSIZE = 128;
     31 
     32 
     33 // MAIN //
     34 
     35 /**
     36 * Computes the sum of a double-precision floating-point strided array elements, ignoring `NaN` values and using pairwise summation.
     37 *
     38 * ## Method
     39 *
     40 * -   This implementation uses pairwise summation, which accrues rounding error `O(log2 N)` instead of `O(N)`. The recursion depth is also `O(log2 N)`.
     41 *
     42 * ## References
     43 *
     44 * -   Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." _SIAM Journal on Scientific Computing_ 14 (4): 783–99. doi:[10.1137/0914050](https://doi.org/10.1137/0914050).
     45 *
     46 * @private
     47 * @param {PositiveInteger} N - number of indexed elements
     48 * @param {NumericArray} out - two-element output array whose first element is the accumulated sum and whose second element is the accumulated number of summed values
     49 * @param {Float64Array} x - input array
     50 * @param {integer} stride - stride length
     51 * @param {NonNegativeInteger} offset - starting index
     52 * @returns {NumericArray} output array
     53 *
     54 * @example
     55 * var Float64Array = require( '@stdlib/array/float64' );
     56 * var floor = require( '@stdlib/math/base/special/floor' );
     57 *
     58 * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
     59 * var N = floor( x.length / 2 );
     60 *
     61 * var out = [ 0.0, 0 ];
     62 * var v = dnansumpw( N, out, x, 2, 1 );
     63 * // returns [ 5.0, 4 ]
     64 */
     65 function dnansumpw( N, out, x, stride, offset ) {
     66 	var ix;
     67 	var s0;
     68 	var s1;
     69 	var s2;
     70 	var s3;
     71 	var s4;
     72 	var s5;
     73 	var s6;
     74 	var s7;
     75 	var M;
     76 	var s;
     77 	var n;
     78 	var v;
     79 	var i;
     80 
     81 	if ( N <= 0 ) {
     82 		return out;
     83 	}
     84 	if ( N === 1 || stride === 0 ) {
     85 		if ( isnan( x[ offset ] ) ) {
     86 			return out;
     87 		}
     88 		out[ 0 ] += x[ offset ];
     89 		out[ 1 ] += 1;
     90 		return out;
     91 	}
     92 	ix = offset;
     93 	if ( N < 8 ) {
     94 		// Use simple summation...
     95 		s = 0.0;
     96 		n = 0;
     97 		for ( i = 0; i < N; i++ ) {
     98 			v = x[ ix ];
     99 			if ( v === v ) {
    100 				s += v;
    101 				n += 1;
    102 			}
    103 			ix += stride;
    104 		}
    105 		out[ 0 ] += s;
    106 		out[ 1 ] += n;
    107 		return out;
    108 	}
    109 	if ( N <= BLOCKSIZE ) {
    110 		// Sum a block with 8 accumulators (by loop unrolling, we lower the effective blocksize to 16)...
    111 		s0 = 0.0;
    112 		s1 = 0.0;
    113 		s2 = 0.0;
    114 		s3 = 0.0;
    115 		s4 = 0.0;
    116 		s5 = 0.0;
    117 		s6 = 0.0;
    118 		s7 = 0.0;
    119 		n = 0;
    120 
    121 		M = N % 8;
    122 		for ( i = 0; i < N-M; i += 8 ) {
    123 			v = x[ ix ];
    124 			if ( v === v ) {
    125 				s0 += v;
    126 				n += 1;
    127 			}
    128 			ix += stride;
    129 			v = x[ ix ];
    130 			if ( v === v ) {
    131 				s1 += v;
    132 				n += 1;
    133 			}
    134 			ix += stride;
    135 			v = x[ ix ];
    136 			if ( v === v ) {
    137 				s2 += v;
    138 				n += 1;
    139 			}
    140 			ix += stride;
    141 			v = x[ ix ];
    142 			if ( v === v ) {
    143 				s3 += v;
    144 				n += 1;
    145 			}
    146 			ix += stride;
    147 			v = x[ ix ];
    148 			if ( v === v ) {
    149 				s4 += v;
    150 				n += 1;
    151 			}
    152 			ix += stride;
    153 			v = x[ ix ];
    154 			if ( v === v ) {
    155 				s5 += v;
    156 				n += 1;
    157 			}
    158 			ix += stride;
    159 			v = x[ ix ];
    160 			if ( v === v ) {
    161 				s6 += v;
    162 				n += 1;
    163 			}
    164 			ix += stride;
    165 			v = x[ ix ];
    166 			if ( v === v ) {
    167 				s7 += v;
    168 				n += 1;
    169 			}
    170 			ix += stride;
    171 		}
    172 		// Pairwise sum the accumulators:
    173 		s = ((s0+s1) + (s2+s3)) + ((s4+s5) + (s6+s7));
    174 
    175 		// Clean-up loop...
    176 		for ( i; i < N; i++ ) {
    177 			v = x[ ix ];
    178 			if ( v === v ) {
    179 				s += v;
    180 				n += 1;
    181 			}
    182 			ix += stride;
    183 		}
    184 		out[ 0 ] += s;
    185 		out[ 1 ] += n;
    186 		return out;
    187 	}
    188 	// Recurse by dividing by two, but avoiding non-multiples of unroll factor...
    189 	n = floor( N/2 );
    190 	n -= n % 8;
    191 	return dnansumpw( n, out, x, stride, ix ) + dnansumpw( N-n, out, x, stride, ix+(n*stride) ); // eslint-disable-line max-len
    192 }
    193 
    194 
    195 // EXPORTS //
    196 
    197 module.exports = dnansumpw;