time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

dnanmeanpw.js (1778B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var mean = require( './ndarray.js' );
     24 
     25 
     26 // MAIN //
     27 
     28 /**
     29 * Computes the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using pairwise summation.
     30 *
     31 * @param {PositiveInteger} N - number of indexed elements
     32 * @param {Float64Array} x - input array
     33 * @param {integer} stride - stride length
     34 * @returns {number} arithmetic mean
     35 *
     36 * @example
     37 * var Float64Array = require( '@stdlib/array/float64' );
     38 *
     39 * var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
     40 * var N = x.length;
     41 *
     42 * var v = dnanmeanpw( N, x, 1 );
     43 * // returns ~0.3333
     44 */
     45 function dnanmeanpw( N, x, stride ) {
     46 	var ix;
     47 	var v;
     48 	var s;
     49 	var n;
     50 	var i;
     51 
     52 	if ( N <= 0 ) {
     53 		return NaN;
     54 	}
     55 	if ( N === 1 || stride === 0 ) {
     56 		return x[ 0 ];
     57 	}
     58 	if ( stride < 0 ) {
     59 		ix = (1-N) * stride;
     60 	} else {
     61 		ix = 0;
     62 	}
     63 	if ( N < 8 ) {
     64 		// Use simple summation...
     65 		s = 0.0;
     66 		n = 0;
     67 		for ( i = 0; i < N; i++ ) {
     68 			v = x[ ix ];
     69 			if ( v === v ) {
     70 				s += v;
     71 				n += 1;
     72 			}
     73 			ix += stride;
     74 		}
     75 		if ( n === 0 ) {
     76 			return NaN;
     77 		}
     78 		return s / n;
     79 	}
     80 	return mean( N, x, stride, ix );
     81 }
     82 
     83 
     84 // EXPORTS //
     85 
     86 module.exports = dnanmeanpw;