dnanmeanpn.js (2623B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MAIN // 22 23 /** 24 * Computes the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm. 25 * 26 * ## Method 27 * 28 * - This implementation uses a two-pass approach, as suggested by Neely (1966). 29 * 30 * ## References 31 * 32 * - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958). 33 * - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036). 34 * 35 * @param {PositiveInteger} N - number of indexed elements 36 * @param {Float64Array} x - input array 37 * @param {integer} stride - stride length 38 * @returns {number} arithmetic mean 39 * 40 * @example 41 * var Float64Array = require( '@stdlib/array/float64' ); 42 * 43 * var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] ); 44 * var N = x.length; 45 * 46 * var v = dnanmeanpn( N, x, 1 ); 47 * // returns ~0.3333 48 */ 49 function dnanmeanpn( N, x, stride ) { 50 var ix; 51 var v; 52 var s; 53 var t; 54 var n; 55 var i; 56 var o; 57 58 if ( N <= 0 ) { 59 return NaN; 60 } 61 if ( N === 1 || stride === 0 ) { 62 return x[ 0 ]; 63 } 64 if ( stride < 0 ) { 65 ix = (1-N) * stride; 66 } else { 67 ix = 0; 68 } 69 o = ix; 70 71 // Compute an estimate for the mean... 72 s = 0.0; 73 n = 0; 74 for ( i = 0; i < N; i++ ) { 75 v = x[ ix ]; 76 if ( v === v ) { 77 n += 1; 78 s += v; 79 } 80 ix += stride; 81 } 82 if ( n === 0 ) { 83 return NaN; 84 } 85 s /= n; 86 87 // Compute an error term... 88 t = 0.0; 89 ix = o; 90 for ( i = 0; i < N; i++ ) { 91 v = x[ ix ]; 92 if ( v === v ) { 93 t += v - s; 94 } 95 ix += stride; 96 } 97 return s + (t/n); 98 } 99 100 101 // EXPORTS // 102 103 module.exports = dnanmeanpn;