dmeanvarpn.c (3136B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 #include "stdlib/stats/base/dmeanvarpn.h" 20 #include "stdlib/blas/ext/base/dsumpw.h" 21 #include <stdint.h> 22 23 /** 24 * Computes the mean and variance of a double-precision floating-point strided array using a two-pass algorithm. 25 * 26 * ## Method 27 * 28 * - This implementation uses a two-pass approach, as suggested by Neely (1966). 29 * 30 * ## References 31 * 32 * - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958). 33 * - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036). 34 * 35 * @param N number of indexed elements 36 * @param correction degrees of freedom adjustment 37 * @param X input array 38 * @param strideX X stride length 39 * @param Out output array 40 * @param strideOut Out stride length 41 */ 42 void stdlib_strided_dmeanvarpn( const int64_t N, const double correction, const double *X, const int64_t strideX, double *Out, const int64_t strideOut ) { 43 int64_t ix; 44 int64_t io; 45 int64_t i; 46 double M2; 47 double mu; 48 double dN; 49 double M; 50 double d; 51 double c; 52 double n; 53 54 if ( strideX < 0 ) { 55 ix = (1-N) * strideX; 56 } else { 57 ix = 0; 58 } 59 if ( strideOut < 0 ) { 60 io = -strideOut; 61 } else { 62 io = 0; 63 } 64 if ( N <= 0 ) { 65 Out[ io ] = 0.0 / 0.0; // NaN 66 Out[ io+strideOut ] = 0.0 / 0.0; // NaN 67 return; 68 } 69 dN = (double)N; 70 n = dN - correction; 71 if ( N == 1 || strideX == 0 ) { 72 Out[ io ] = X[ ix ]; 73 if ( n <= 0.0 ) { 74 Out[ io+strideOut ] = 0.0 / 0.0; // NaN 75 } else { 76 Out[ io+strideOut ] = 0.0; 77 } 78 return; 79 } 80 // Compute an estimate for the mean: 81 mu = stdlib_strided_dsumpw( N, X, strideX ) / dN; 82 if ( mu != mu ) { 83 Out[ io ] = 0.0 / 0.0; // NaN 84 Out[ io+strideOut ] = 0.0 / 0.0; // NaN 85 return; 86 } 87 // Compute the sum of squared differences from the mean... 88 M2 = 0.0; 89 M = 0.0; 90 for ( i = 0; i < N; i++ ) { 91 d = X[ ix ] - mu; 92 M2 += d * d; 93 M += d; 94 ix += strideX; 95 } 96 // Compute an error term for the mean: 97 c = M / dN; 98 99 Out[ io ] = mu + c; 100 if ( n <= 0.0 ) { 101 Out[ io+strideOut ] = 0.0 / 0.0; // NaN 102 } else { 103 Out[ io+strideOut ] = (M2/n) - (c*(M/n)); 104 } 105 return; 106 }