ndarray.js (3570B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 24 var dsumpw = require( '@stdlib/blas/ext/base/dsumpw' ).ndarray; 25 26 27 // MAIN // 28 29 /** 30 * Computes the mean and variance of a double-precision floating-point strided array using a two-pass algorithm. 31 * 32 * ## Method 33 * 34 * - This implementation uses a two-pass approach, as suggested by Neely (1966). 35 * 36 * ## References 37 * 38 * - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958). 39 * - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036). 40 * 41 * @param {PositiveInteger} N - number of indexed elements 42 * @param {number} correction - degrees of freedom adjustment 43 * @param {Float64Array} x - input array 44 * @param {integer} strideX - `x` stride length 45 * @param {NonNegativeInteger} offsetX - `x` starting index 46 * @param {Float64Array} out - output array 47 * @param {integer} strideOut - `out` stride length 48 * @param {NonNegativeInteger} offsetOut - `out` starting index 49 * @returns {Float64Array} output array 50 * 51 * @example 52 * var Float64Array = require( '@stdlib/array/float64' ); 53 * var floor = require( '@stdlib/math/base/special/floor' ); 54 * 55 * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); 56 * var out = new Float64Array( 2 ); 57 * 58 * var N = floor( x.length / 2 ); 59 * 60 * var v = dmeanvarpn( N, 1, x, 2, 1, out, 1, 0 ); 61 * // returns <Float64Array>[ 1.25, 6.25 ] 62 */ 63 function dmeanvarpn( N, correction, x, strideX, offsetX, out, strideOut, offsetOut ) { // eslint-disable-line max-len 64 var mu; 65 var ix; 66 var io; 67 var M2; 68 var M; 69 var d; 70 var c; 71 var n; 72 var i; 73 74 ix = offsetX; 75 io = offsetOut; 76 if ( N <= 0 ) { 77 out[ io ] = NaN; 78 out[ io+strideOut ] = NaN; 79 return out; 80 } 81 n = N - correction; 82 if ( N === 1 || strideX === 0 ) { 83 out[ io ] = x[ ix ]; 84 if ( n <= 0.0 ) { 85 out[ io+strideOut ] = NaN; 86 } else { 87 out[ io+strideOut ] = 0.0; 88 } 89 return out; 90 } 91 // Compute an estimate for the mean: 92 mu = dsumpw( N, x, strideX, offsetX ) / N; 93 if ( isnan( mu ) ) { 94 out[ io ] = NaN; 95 out[ io+strideOut ] = NaN; 96 return out; 97 } 98 // Compute the sum of squared differences from the mean... 99 M2 = 0.0; 100 M = 0.0; 101 for ( i = 0; i < N; i++ ) { 102 d = x[ ix ] - mu; 103 M2 += d * d; 104 M += d; 105 ix += strideX; 106 } 107 // Compute an error term for the mean: 108 c = M / N; 109 110 out[ io ] = mu + c; 111 if ( n <= 0.0 ) { 112 out[ io+strideOut ] = NaN; 113 } else { 114 out[ io+strideOut ] = (M2/n) - (c*(M/n)); 115 } 116 return out; 117 } 118 119 120 // EXPORTS // 121 122 module.exports = dmeanvarpn;