dmeanvarpn.js (3369B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 24 var dsumpw = require( '@stdlib/blas/ext/base/dsumpw' ); 25 26 27 // MAIN // 28 29 /** 30 * Computes the mean and variance of a double-precision floating-point strided array using a two-pass algorithm. 31 * 32 * ## Method 33 * 34 * - This implementation uses a two-pass approach, as suggested by Neely (1966). 35 * 36 * ## References 37 * 38 * - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958). 39 * - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036). 40 * 41 * @param {PositiveInteger} N - number of indexed elements 42 * @param {number} correction - degrees of freedom adjustment 43 * @param {Float64Array} x - input array 44 * @param {integer} strideX - `x` stride length 45 * @param {Float64Array} out - output array 46 * @param {integer} strideOut - `out` stride length 47 * @returns {Float64Array} output array 48 * 49 * @example 50 * var Float64Array = require( '@stdlib/array/float64' ); 51 * 52 * var x = new Float64Array( [ 1.0, -2.0, 2.0 ] ); 53 * var out = new Float64Array( 2 ); 54 * 55 * var v = dmeanvarpn( x.length, 1, x, 1, out, 1 ); 56 * // returns <Float64Array>[ ~0.3333, ~4.3333 ] 57 */ 58 function dmeanvarpn( N, correction, x, strideX, out, strideOut ) { 59 var mu; 60 var ix; 61 var io; 62 var M2; 63 var M; 64 var d; 65 var c; 66 var n; 67 var i; 68 69 if ( strideX < 0 ) { 70 ix = (1-N) * strideX; 71 } else { 72 ix = 0; 73 } 74 if ( strideOut < 0 ) { 75 io = -strideOut; 76 } else { 77 io = 0; 78 } 79 if ( N <= 0 ) { 80 out[ io ] = NaN; 81 out[ io+strideOut ] = NaN; 82 return out; 83 } 84 n = N - correction; 85 if ( N === 1 || strideX === 0 ) { 86 out[ io ] = x[ ix ]; 87 if ( n <= 0.0 ) { 88 out[ io+strideOut ] = NaN; 89 } else { 90 out[ io+strideOut ] = 0.0; 91 } 92 return out; 93 } 94 // Compute an estimate for the mean: 95 mu = dsumpw( N, x, strideX ) / N; 96 if ( isnan( mu ) ) { 97 out[ io ] = NaN; 98 out[ io+strideOut ] = NaN; 99 return out; 100 } 101 // Compute the sum of squared differences from the mean... 102 M2 = 0.0; 103 M = 0.0; 104 for ( i = 0; i < N; i++ ) { 105 d = x[ ix ] - mu; 106 M2 += d * d; 107 M += d; 108 ix += strideX; 109 } 110 // Compute an error term for the mean: 111 c = M / N; 112 113 out[ io ] = mu + c; 114 if ( n <= 0.0 ) { 115 out[ io+strideOut ] = NaN; 116 } else { 117 out[ io+strideOut ] = (M2/n) - (c*(M/n)); 118 } 119 return out; 120 } 121 122 123 // EXPORTS // 124 125 module.exports = dmeanvarpn;