README.md (10963B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2020 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 <!--lint disable maximum-heading-length--> 22 23 # dmeanstdevpn 24 25 > Calculate the [mean][arithmetic-mean] and [standard deviation][standard-deviation] of a double-precision floating-point strided array using a two-pass algorithm. 26 27 <section class="intro"> 28 29 The population [standard deviation][standard-deviation] of a finite size population of size `N` is given by 30 31 <!-- <equation class="equation" label="eq:population_standard_deviation" align="center" raw="\sigma = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2}" alt="Equation for the population standard deviation."> --> 32 33 <div class="equation" align="center" data-raw-text="\sigma = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2}" data-equation="eq:population_standard_deviation"> 34 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@8467ec3de1244d48205fbf95404ac53f957b4c5b/lib/node_modules/@stdlib/stats/base/dmeanstdevpn/docs/img/equation_population_standard_deviation.svg" alt="Equation for the population standard deviation."> 35 <br> 36 </div> 37 38 <!-- </equation> --> 39 40 where the population mean is given by 41 42 <!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> --> 43 44 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean"> 45 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@8467ec3de1244d48205fbf95404ac53f957b4c5b/lib/node_modules/@stdlib/stats/base/dmeanstdevpn/docs/img/equation_population_mean.svg" alt="Equation for the population mean."> 46 <br> 47 </div> 48 49 <!-- </equation> --> 50 51 Often in the analysis of data, the true population [standard deviation][standard-deviation] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population [standard deviation][standard-deviation], the result is biased and yields an **uncorrected sample standard deviation**. To compute a **corrected sample standard deviation** for a sample of size `n`, 52 53 <!-- <equation class="equation" label="eq:corrected_sample_standard_deviation" align="center" raw="s = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2}" alt="Equation for computing a corrected sample standard deviation."> --> 54 55 <div class="equation" align="center" data-raw-text="s = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2}" data-equation="eq:corrected_sample_standard_deviation"> 56 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@8467ec3de1244d48205fbf95404ac53f957b4c5b/lib/node_modules/@stdlib/stats/base/dmeanstdevpn/docs/img/equation_corrected_sample_standard_deviation.svg" alt="Equation for computing a corrected sample standard deviation."> 57 <br> 58 </div> 59 60 <!-- </equation> --> 61 62 where the sample mean is given by 63 64 <!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> --> 65 66 <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean"> 67 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@8467ec3de1244d48205fbf95404ac53f957b4c5b/lib/node_modules/@stdlib/stats/base/dmeanstdevpn/docs/img/equation_sample_mean.svg" alt="Equation for the sample mean."> 68 <br> 69 </div> 70 71 <!-- </equation> --> 72 73 The use of the term `n-1` is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample standard deviation and population standard deviation. Depending on the characteristics of the population distribution, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators. 74 75 </section> 76 77 <!-- /.intro --> 78 79 <section class="usage"> 80 81 ## Usage 82 83 ```javascript 84 var dmeanstdevpn = require( '@stdlib/stats/base/dmeanstdevpn' ); 85 ``` 86 87 #### dmeanstdevpn( N, correction, x, strideX, out, strideOut ) 88 89 Computes the [mean][arithmetic-mean] and [standard deviation][standard-deviation] of a double-precision floating-point strided array `x` using a two-pass algorithm. 90 91 ```javascript 92 var Float64Array = require( '@stdlib/array/float64' ); 93 94 var x = new Float64Array( [ 1.0, -2.0, 2.0 ] ); 95 var out = new Float64Array( 2 ); 96 97 var v = dmeanstdevpn( x.length, 1, x, 1, out, 1 ); 98 // returns <Float64Array>[ ~0.3333, ~2.0817 ] 99 100 var bool = ( v === out ); 101 // returns true 102 ``` 103 104 The function has the following parameters: 105 106 - **N**: number of indexed elements. 107 - **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [standard deviation][standard-deviation] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [standard deviation][standard-deviation] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample [standard deviation][standard-deviation], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction). 108 - **x**: input [`Float64Array`][@stdlib/array/float64]. 109 - **strideX**: index increment for `x`. 110 - **out**: output [`Float64Array`][@stdlib/array/float64] for storing results. 111 - **strideOut**: index increment for `out`. 112 113 The `N` and `stride` parameters determine which elements are accessed at runtime. For example, to compute the [standard deviation][standard-deviation] of every other element in `x`, 114 115 ```javascript 116 var Float64Array = require( '@stdlib/array/float64' ); 117 var floor = require( '@stdlib/math/base/special/floor' ); 118 119 var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] ); 120 var out = new Float64Array( 2 ); 121 var N = floor( x.length / 2 ); 122 123 var v = dmeanstdevpn( N, 1, x, 2, out, 1 ); 124 // returns <Float64Array>[ 1.25, 2.5 ] 125 ``` 126 127 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views. 128 129 <!-- eslint-disable stdlib/capitalized-comments --> 130 131 ```javascript 132 var Float64Array = require( '@stdlib/array/float64' ); 133 var floor = require( '@stdlib/math/base/special/floor' ); 134 135 var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); 136 var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element 137 138 var out0 = new Float64Array( 4 ); 139 var out1 = new Float64Array( out0.buffer, out0.BYTES_PER_ELEMENT*2 ); // start at 3rd element 140 141 var N = floor( x0.length / 2 ); 142 143 var v = dmeanstdevpn( N, 1, x1, 2, out1, 1 ); 144 // returns <Float64Array>[ 1.25, 2.5 ] 145 ``` 146 147 #### dmeanstdevpn.ndarray( N, correction, x, strideX, offsetX, out, strideOut, offsetOut ) 148 149 Computes the [mean][arithmetic-mean] and [standard deviation][standard-deviation] of a double-precision floating-point strided array using a two-pass algorithm and alternative indexing semantics. 150 151 ```javascript 152 var Float64Array = require( '@stdlib/array/float64' ); 153 154 var x = new Float64Array( [ 1.0, -2.0, 2.0 ] ); 155 var out = new Float64Array( 2 ); 156 157 var v = dmeanstdevpn.ndarray( x.length, 1, x, 1, 0, out, 1, 0 ); 158 // returns <Float64Array>[ ~0.3333, ~2.0817 ] 159 ``` 160 161 The function has the following additional parameters: 162 163 - **offsetX**: starting index for `x`. 164 - **offsetOut**: starting index for `out`. 165 166 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameters support indexing semantics based on a starting index. For example, to calculate the [mean][arithmetic-mean] and [standard deviation][standard-deviation] for every other value in `x` starting from the second value 167 168 ```javascript 169 var Float64Array = require( '@stdlib/array/float64' ); 170 var floor = require( '@stdlib/math/base/special/floor' ); 171 172 var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); 173 var out = new Float64Array( 4 ); 174 var N = floor( x.length / 2 ); 175 176 var v = dmeanstdevpn.ndarray( N, 1, x, 2, 1, out, 2, 1 ); 177 // returns <Float64Array>[ 0.0, 1.25, 0.0, 2.5 ] 178 ``` 179 180 </section> 181 182 <!-- /.usage --> 183 184 <section class="notes"> 185 186 ## Notes 187 188 - If `N <= 0`, both functions return a [mean][arithmetic-mean] and [standard deviation][standard-deviation] equal to `NaN`. 189 - If `N - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment), both functions return a [standard deviation][standard-deviation] equal to `NaN`. 190 191 </section> 192 193 <!-- /.notes --> 194 195 <section class="examples"> 196 197 ## Examples 198 199 <!-- eslint no-undef: "error" --> 200 201 ```javascript 202 var randu = require( '@stdlib/random/base/randu' ); 203 var round = require( '@stdlib/math/base/special/round' ); 204 var Float64Array = require( '@stdlib/array/float64' ); 205 var dmeanstdevpn = require( '@stdlib/stats/base/dmeanstdevpn' ); 206 207 var out; 208 var x; 209 var i; 210 211 x = new Float64Array( 10 ); 212 for ( i = 0; i < x.length; i++ ) { 213 x[ i ] = round( (randu()*100.0) - 50.0 ); 214 } 215 console.log( x ); 216 217 out = new Float64Array( 2 ); 218 dmeanstdevpn( x.length, 1, x, 1, out, 1 ); 219 console.log( out ); 220 ``` 221 222 </section> 223 224 <!-- /.examples --> 225 226 * * * 227 228 <section class="references"> 229 230 ## References 231 232 - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958][@neely:1966a]. 233 - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036][@schubert:2018a]. 234 235 </section> 236 237 <!-- /.references --> 238 239 <section class="links"> 240 241 [arithmetic-mean]: https://en.wikipedia.org/wiki/Arithmetic_mean 242 243 [standard-deviation]: https://en.wikipedia.org/wiki/Standard_deviation 244 245 [@stdlib/array/float64]: https://www.npmjs.com/package/@stdlib/array-float64 246 247 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray 248 249 [@neely:1966a]: https://doi.org/10.1145/365719.365958 250 251 [@schubert:2018a]: https://doi.org/10.1145/3221269.3223036 252 253 </section> 254 255 <!-- /.links -->