time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (5597B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2020 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # dmeankbn
     22 
     23 > Calculate the [arithmetic mean][arithmetic-mean] of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm.
     24 
     25 <section class="intro">
     26 
     27 The [arithmetic mean][arithmetic-mean] is defined as
     28 
     29 <!-- <equation class="equation" label="eq:arithmetic_mean" align="center" raw="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the arithmetic mean."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:arithmetic_mean">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@195c6d0df4074a7fb40f55cc6bc541f7b70125e7/lib/node_modules/@stdlib/stats/base/dmeankbn/docs/img/equation_arithmetic_mean.svg" alt="Equation for the arithmetic mean.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 </section>
     39 
     40 <!-- /.intro -->
     41 
     42 <section class="usage">
     43 
     44 ## Usage
     45 
     46 ```javascript
     47 var dmeankbn = require( '@stdlib/stats/base/dmeankbn' );
     48 ```
     49 
     50 #### dmeankbn( N, x, stride )
     51 
     52 Computes the [arithmetic mean][arithmetic-mean] of a double-precision floating-point strided array `x` using an improved Kahan–Babuška algorithm.
     53 
     54 ```javascript
     55 var Float64Array = require( '@stdlib/array/float64' );
     56 
     57 var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
     58 var N = x.length;
     59 
     60 var v = dmeankbn( N, x, 1 );
     61 // returns ~0.3333
     62 ```
     63 
     64 The function has the following parameters:
     65 
     66 -   **N**: number of indexed elements.
     67 -   **x**: input [`Float64Array`][@stdlib/array/float64].
     68 -   **stride**: index increment for `x`.
     69 
     70 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in `x`,
     71 
     72 ```javascript
     73 var Float64Array = require( '@stdlib/array/float64' );
     74 var floor = require( '@stdlib/math/base/special/floor' );
     75 
     76 var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
     77 var N = floor( x.length / 2 );
     78 
     79 var v = dmeankbn( N, x, 2 );
     80 // returns 1.25
     81 ```
     82 
     83 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
     84 
     85 <!-- eslint-disable stdlib/capitalized-comments -->
     86 
     87 ```javascript
     88 var Float64Array = require( '@stdlib/array/float64' );
     89 var floor = require( '@stdlib/math/base/special/floor' );
     90 
     91 var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
     92 var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
     93 
     94 var N = floor( x0.length / 2 );
     95 
     96 var v = dmeankbn( N, x1, 2 );
     97 // returns 1.25
     98 ```
     99 
    100 #### dmeankbn.ndarray( N, x, stride, offset )
    101 
    102 Computes the [arithmetic mean][arithmetic-mean] of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm and alternative indexing semantics.
    103 
    104 ```javascript
    105 var Float64Array = require( '@stdlib/array/float64' );
    106 
    107 var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
    108 var N = x.length;
    109 
    110 var v = dmeankbn.ndarray( N, x, 1, 0 );
    111 // returns ~0.33333
    112 ```
    113 
    114 The function has the following additional parameters:
    115 
    116 -   **offset**: starting index for `x`.
    117 
    118 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other value in `x` starting from the second value
    119 
    120 ```javascript
    121 var Float64Array = require( '@stdlib/array/float64' );
    122 var floor = require( '@stdlib/math/base/special/floor' );
    123 
    124 var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    125 var N = floor( x.length / 2 );
    126 
    127 var v = dmeankbn.ndarray( N, x, 2, 1 );
    128 // returns 1.25
    129 ```
    130 
    131 </section>
    132 
    133 <!-- /.usage -->
    134 
    135 <section class="notes">
    136 
    137 ## Notes
    138 
    139 -   If `N <= 0`, both functions return `NaN`.
    140 
    141 </section>
    142 
    143 <!-- /.notes -->
    144 
    145 <section class="examples">
    146 
    147 ## Examples
    148 
    149 <!-- eslint no-undef: "error" -->
    150 
    151 ```javascript
    152 var randu = require( '@stdlib/random/base/randu' );
    153 var round = require( '@stdlib/math/base/special/round' );
    154 var Float64Array = require( '@stdlib/array/float64' );
    155 var dmeankbn = require( '@stdlib/stats/base/dmeankbn' );
    156 
    157 var x;
    158 var i;
    159 
    160 x = new Float64Array( 10 );
    161 for ( i = 0; i < x.length; i++ ) {
    162     x[ i ] = round( (randu()*100.0) - 50.0 );
    163 }
    164 console.log( x );
    165 
    166 var v = dmeankbn( x.length, x, 1 );
    167 console.log( v );
    168 ```
    169 
    170 </section>
    171 
    172 <!-- /.examples -->
    173 
    174 * * *
    175 
    176 <section class="references">
    177 
    178 ## References
    179 
    180 -   Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106][@neumaier:1974a].
    181 
    182 </section>
    183 
    184 <!-- /.references -->
    185 
    186 <section class="links">
    187 
    188 [arithmetic-mean]: https://en.wikipedia.org/wiki/Arithmetic_mean
    189 
    190 [@stdlib/array/float64]: https://www.npmjs.com/package/@stdlib/array-float64
    191 
    192 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
    193 
    194 [@neumaier:1974a]: https://doi.org/10.1002/zamm.19740540106
    195 
    196 </section>
    197 
    198 <!-- /.links -->