time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

variance.js (1756B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     24 var gamma = require( '@stdlib/math/base/special/gamma' );
     25 var mean = require( './../../../../../base/dists/weibull/mean' );
     26 
     27 
     28 // MAIN //
     29 
     30 /**
     31 * Returns the variance of a Weibull distribution.
     32 *
     33 * @param {PositiveNumber} k - shape parameter
     34 * @param {PositiveNumber} lambda - scale parameter
     35 * @returns {PositiveNumber} variance
     36 *
     37 * @example
     38 * var v = variance( 1.0, 1.0 );
     39 * // returns 1.0
     40 *
     41 * @example
     42 * var v = variance( 4.0, 12.0 );
     43 * // returns ~9.311
     44 *
     45 * @example
     46 * var v = variance( 8.0, 2.0 );
     47 * // returns ~0.078
     48 *
     49 * @example
     50 * var v = variance( 1.0, -0.1 );
     51 * // returns NaN
     52 *
     53 * @example
     54 * var v = variance( -0.1, 1.0 );
     55 * // returns NaN
     56 *
     57 * @example
     58 * var v = variance( 2.0, NaN );
     59 * // returns NaN
     60 *
     61 * @example
     62 * var v = variance( NaN, 2.0 );
     63 * // returns NaN
     64 */
     65 function variance( k, lambda ) {
     66 	var mu;
     67 	if (
     68 		isnan( k ) ||
     69 		isnan( lambda ) ||
     70 		k <= 0.0 ||
     71 		lambda <= 0.0
     72 	) {
     73 		return NaN;
     74 	}
     75 	mu = mean( k, lambda );
     76 	return ( lambda*lambda * ( gamma( 1.0 + (2.0/k) ) ) ) - ( mu*mu );
     77 }
     78 
     79 
     80 // EXPORTS //
     81 
     82 module.exports = variance;