time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

factory.js (1865B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var constantFunction = require( '@stdlib/utils/constant-function' );
     24 var ln = require( '@stdlib/math/base/special/ln' );
     25 var pow = require( '@stdlib/math/base/special/pow' );
     26 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     27 
     28 
     29 // MAIN //
     30 
     31 /**
     32 * Returns a function for evaluating the quantile function for a Weibull distribution.
     33 *
     34 * @param {PositiveNumber} k - scale parameter
     35 * @param {PositiveNumber} lambda - shape parameter
     36 * @returns {Function} quantile function
     37 *
     38 * @example
     39 * var quantile = factory( 2.0, 10.0 );
     40 * var y = quantile( 0.4 );
     41 * // returns ~7.147
     42 *
     43 * y = quantile( 0.8 );
     44 * // returns ~12.686
     45 */
     46 function factory( k, lambda ) {
     47 	if (
     48 		isnan( k ) ||
     49 		isnan( lambda ) ||
     50 		k <= 0.0 ||
     51 		lambda <= 0.0
     52 	) {
     53 		return constantFunction( NaN );
     54 	}
     55 	return quantile;
     56 
     57 	/**
     58 	* Evaluates the quantile function for a Weibull distribution.
     59 	*
     60 	* @private
     61 	* @param {Probability} p - input value
     62 	* @returns {number} evaluated quantile function
     63 	*
     64 	* @example
     65 	* var y = quantile( 0.3 );
     66 	* // returns <number>
     67 	*/
     68 	function quantile( p ) {
     69 		if ( isnan( p ) || p < 0.0 || p > 1.0 ) {
     70 			return NaN;
     71 		}
     72 		return lambda * pow( -ln( 1.0 - p ), 1.0/k );
     73 	}
     74 }
     75 
     76 
     77 // EXPORTS //
     78 
     79 module.exports = factory;