time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

factory.js (2169B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var constantFunction = require( '@stdlib/utils/constant-function' );
     24 var pow = require( '@stdlib/math/base/special/pow' );
     25 var exp = require( '@stdlib/math/base/special/exp' );
     26 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     27 var PINF = require( '@stdlib/constants/float64/pinf' );
     28 var NINF = require( '@stdlib/constants/float64/ninf' );
     29 
     30 
     31 // MAIN //
     32 
     33 /**
     34 * Returns a function for evaluating the probability density function (PDF) for a Weibull distribution.
     35 *
     36 * @param {PositiveNumber} k - shape parameter
     37 * @param {PositiveNumber} lambda - scale parameter
     38 * @returns {Function} function to evaluate the probability density function
     39 *
     40 * @example
     41 * var pdf = factory( 7.0, 6.0 );
     42 * var y = pdf( 7.0 );
     43 * // returns ~0.155
     44 *
     45 * y = pdf( 5.0 );
     46 * // returns ~0.296
     47 */
     48 function factory( k, lambda ) {
     49 	if (
     50 		isnan( k ) ||
     51 		isnan( lambda ) ||
     52 		k <= 0.0 ||
     53 		lambda <= 0.0
     54 	) {
     55 		return constantFunction( NaN );
     56 	}
     57 	return pdf;
     58 
     59 	/**
     60 	* Evaluates the probability density function (PDF) for a Weibull distribution.
     61 	*
     62 	* @private
     63 	* @param {number} x - input value
     64 	* @returns {number} evaluated PDF
     65 	*
     66 	* @example
     67 	* var y = pdf( 2.3 );
     68 	* // returns <number>
     69 	*/
     70 	function pdf( x ) {
     71 		var xol;
     72 		var z;
     73 		if ( x < 0.0 ) {
     74 			return 0.0;
     75 		}
     76 		if ( x === PINF || x === NINF ) {
     77 			return 0.0;
     78 		}
     79 		if ( x === 0.0 ) {
     80 			return ( k === 1.0 ) ? k / lambda : 0.0;
     81 		}
     82 		xol = x / lambda;
     83 		z = pow( xol, k - 1.0 );
     84 		return ( k / lambda ) * z * exp( -pow( xol, k ) );
     85 	}
     86 }
     87 
     88 
     89 // EXPORTS //
     90 
     91 module.exports = factory;