factory.js (2098B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var constantFunction = require( '@stdlib/utils/constant-function' ); 24 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 25 var gamma = require( '@stdlib/math/base/special/gamma' ); 26 var EPS = require( '@stdlib/constants/float64/eps' ); 27 28 29 // MAIN // 30 31 /** 32 * Returns a function for evaluating the moment-generating function (MGF) of a Weibull distribution with shape `k` and scale `lambda`. 33 * 34 * @param {PositiveNumber} k - shape parameter 35 * @param {PositiveNumber} lambda - scale parameter 36 * @returns {Function} MGF 37 * 38 * @example 39 * var mgf = factory( 8.0, 10.0 ); 40 * 41 * var y = mgf( 0.8 ); 42 * // returns ~3150.149 43 * 44 * y = mgf( 0.08 ); 45 * // returns ~2.137 46 */ 47 function factory( k, lambda ) { 48 if ( 49 isnan( k ) || 50 isnan( lambda ) || 51 k <= 0.0 || 52 lambda <= 0.0 53 ) { 54 return constantFunction( NaN ); 55 } 56 return mgf; 57 58 /** 59 * Evaluates the moment-generating function (MGF) for a Weibull distribution. 60 * 61 * @private 62 * @param {number} t - input value 63 * @returns {number} evaluated MGF 64 * 65 * @example 66 * var y = mgf( 0.5 ); 67 * // returns <number> 68 */ 69 function mgf( t ) { 70 var summand; 71 var sum; 72 var c; 73 var n; 74 75 if ( isnan( t ) ) { 76 return NaN; 77 } 78 sum = 1.0; 79 c = 1.0; 80 n = 0; 81 do { 82 n += 1; 83 c *= ( t * lambda ) / n; 84 if ( c === 0.0 ) { 85 summand = 0.0; 86 } else { 87 summand = c * gamma( 1.0 + (n / k) ); 88 } 89 sum += summand; 90 } while ( summand / sum > EPS ); 91 return sum; 92 } 93 } 94 95 96 // EXPORTS // 97 98 module.exports = factory;