time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

repl.txt (1485B)


      1 
      2 {{alias}}( x, k, λ )
      3     Evaluates the logarithm of the probability density function (PDF) for a
      4     Weibull distribution with shape parameter `k` and scale parameter `λ` at a
      5     value `x`.
      6 
      7     If provided `NaN` as any argument, the function returns `NaN`.
      8 
      9     If provided a nonpositive value for `λ` or `k`, the function returns `NaN`.
     10 
     11     Parameters
     12     ----------
     13     x: number
     14         Input value.
     15 
     16     k: number
     17         Shape parameter.
     18 
     19     λ: number
     20         Scale parameter.
     21 
     22     Returns
     23     -------
     24     out: number
     25         Evaluated logPDF.
     26 
     27     Examples
     28     --------
     29     > var y = {{alias}}( 2.0, 1.0, 0.5 )
     30     ~-3.307
     31     > y = {{alias}}( 0.1, 1.0, 1.0 )
     32     ~-0.1
     33     > y = {{alias}}( -1.0, 4.0, 2.0 )
     34     -Infinity
     35     > y = {{alias}}( NaN, 0.6, 1.0 )
     36     NaN
     37     > y = {{alias}}( 0.0, NaN, 1.0 )
     38     NaN
     39     > y = {{alias}}( 0.0, 0.0, NaN )
     40     NaN
     41     > y = {{alias}}( 2.0, 0.0, -1.0 )
     42     NaN
     43 
     44 
     45 {{alias}}.factory( k, λ )
     46     Returns a function for evaluating the logarithm of the probability density
     47     function (PDF) of a Weibull distribution with shape parameter `k` and scale
     48     parameter `λ`.
     49 
     50     Parameters
     51     ----------
     52     k: number
     53         Shape parameter.
     54 
     55     λ: number
     56         Scale parameter.
     57 
     58     Returns
     59     -------
     60     logpdf: Function
     61         Logarithm of probability density function (PDF).
     62 
     63     Examples
     64     --------
     65     > var mylofpdf = {{alias}}.factory( 7.0, 6.0 );
     66     > y = mylofpdf( 7.0 )
     67     ~-1.863
     68 
     69     See Also
     70     --------
     71