time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (4449B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # Logarithm of Probability Density Function
     22 
     23 > [Weibull][weibull-distribution] distribution logarithm of [probability density function][pdf] (PDF).
     24 
     25 <section class="intro">
     26 
     27 The [probability density function][pdf] (PDF) for a [Weibull][weibull-distribution] random variable is
     28 
     29 <!-- <equation class="equation" label="eq:weibull_weibull_pdf" align="center" raw="f(x;\lambda,k) = \begin{cases} \frac{k}{\lambda}\left (\frac{x}{\lambda} \right)^{k-1}e^{-(x/\lambda)^k} & x \geq 0 \\ 0 & x < 0\end{cases}" alt="Probability density function (PDF) for a Weibull distribution."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="f(x;\lambda,k) = \begin{cases} \frac{k}{\lambda}\left (\frac{x}{\lambda} \right)^{k-1}e^{-(x/\lambda)^k} &amp; x \geq 0 \\ 0 &amp; x &lt; 0\end{cases}" data-equation="eq:weibull_weibull_pdf">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/weibull/logpdf/docs/img/equation_weibull_weibull_pdf.svg" alt="Probability density function (PDF) for a Weibull distribution.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where `lambda > 0` and `k > 0` are the respective [scale][scale] and [shape][shape] parameters of the distribution.
     39 
     40 </section>
     41 
     42 <!-- /.intro -->
     43 
     44 <section class="usage">
     45 
     46 ## Usage
     47 
     48 ```javascript
     49 var logpdf = require( '@stdlib/stats/base/dists/weibull/logpdf' );
     50 ```
     51 
     52 #### logpdf( x, k, lambda )
     53 
     54 Evaluates the logarithm of the [probability density function][pdf] (PDF) for a [Weibull][weibull-distribution] distribution with [shape parameter][shape] `k` and [scale parameter][scale] `lambda`.
     55 
     56 ```javascript
     57 var y = logpdf( 2.0, 1.0, 0.5 );
     58 // returns ~-3.307
     59 
     60 y = logpdf( -1.0, 4.0, 2.0 );
     61 // returns -Infinity
     62 ```
     63 
     64 If provided `NaN` as any argument, the function returns `NaN`.
     65 
     66 ```javascript
     67 var y = logpdf( NaN, 1.0, 1.0 );
     68 // returns NaN
     69 
     70 y = logpdf( 0.0, NaN, 1.0 );
     71 // returns NaN
     72 
     73 y = logpdf( 0.0, 1.0, NaN );
     74 // returns NaN
     75 ```
     76 
     77 If provided `k <= 0`, the function returns `NaN`.
     78 
     79 ```javascript
     80 var y = logpdf( 2.0, 0.0, 1.0 );
     81 // returns NaN
     82 
     83 y = logpdf( 2.0, -1.0, 1.0 );
     84 // returns NaN
     85 ```
     86 
     87 If provided `lambda <= 0`, the function returns `NaN`.
     88 
     89 ```javascript
     90 var y = logpdf( 2.0, 1.0, 0.0 );
     91 // returns NaN
     92 
     93 y = logpdf( 2.0, 1.0, -1.0 );
     94 // returns NaN
     95 ```
     96 
     97 #### logpdf.factory( k, lambda )
     98 
     99 Returns a `function` for evaluating the logarithm of the [PDF][pdf] for a [Weibull][weibull-distribution] distribution with [shape parameter][shape] `k` and [scale parameter][scale] `lambda`.
    100 
    101 ```javascript
    102 var mylogpdf = logpdf.factory( 2.0, 10.0 );
    103 
    104 var y = mylogpdf( 12.0 );
    105 // returns ~-2.867
    106 
    107 y = mylogpdf( 5.0 );
    108 // returns ~-2.553
    109 ```
    110 
    111 </section>
    112 
    113 <!-- /.usage -->
    114 
    115 <section class="notes">
    116 
    117 ## Notes
    118 
    119 -   In virtually all cases, using the `logpdf` or `logcdf` functions is preferable to manually computing the logarithm of the `pdf` or `cdf`, respectively, since the latter is prone to overflow and underflow.
    120 
    121 </section>
    122 
    123 <!-- /.notes -->
    124 
    125 <section class="examples">
    126 
    127 ## Examples
    128 
    129 <!-- eslint no-undef: "error" -->
    130 
    131 ```javascript
    132 var randu = require( '@stdlib/random/base/randu' );
    133 var logpdf = require( '@stdlib/stats/base/dists/weibull/logpdf' );
    134 
    135 var lambda;
    136 var k;
    137 var x;
    138 var y;
    139 var i;
    140 
    141 for ( i = 0; i < 10; i++ ) {
    142     x = randu() * 10.0;
    143     lambda = randu() * 10.0;
    144     k = randu() * 10.0;
    145     y = logpdf( x, k, lambda );
    146     console.log( 'x: %d, k: %d, λ: %d, ln(f(x;k,λ)): %d', x.toFixed( 4 ), k.toFixed( 4 ), lambda.toFixed( 4 ), y.toFixed( 4 ) );
    147 }
    148 ```
    149 
    150 </section>
    151 
    152 <!-- /.examples -->
    153 
    154 <section class="links">
    155 
    156 [pdf]: https://en.wikipedia.org/wiki/Probability_density_function
    157 
    158 [weibull-distribution]: https://en.wikipedia.org/wiki/Weibull_distribution
    159 
    160 [shape]: https://en.wikipedia.org/wiki/Shape_parameter
    161 
    162 [scale]: https://en.wikipedia.org/wiki/Scale_parameter
    163 
    164 </section>
    165 
    166 <!-- /.links -->