time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

repl.txt (1466B)


      1 
      2 {{alias}}( t, a, b )
      3     Evaluates the moment-generating function (MGF) for a uniform
      4     distribution with minimum support `a` and maximum support `b` at a value
      5     `t`.
      6 
      7     If provided `NaN` as any argument, the function returns `NaN`.
      8 
      9     If provided `a >= b`, the function returns `NaN`.
     10 
     11     Parameters
     12     ----------
     13     t: number
     14         Input value.
     15 
     16     a: number
     17         Minimum support.
     18 
     19     b: number
     20         Maximum support.
     21 
     22     Returns
     23     -------
     24     out: number
     25         Evaluated MGF.
     26 
     27     Examples
     28     --------
     29     > var y = {{alias}}( 2.0, 0.0, 4.0 )
     30     ~372.495
     31     > y = {{alias}}( -0.2, 0.0, 4.0 )
     32     ~0.688
     33     > y = {{alias}}( 2.0, 0.0, 1.0 )
     34     ~3.195
     35     > y = {{alias}}( 0.5, 3.0, 2.0 )
     36     NaN
     37     > y = {{alias}}( 0.5, 3.0, 3.0 )
     38     NaN
     39     > y = {{alias}}( NaN, 0.0, 1.0 )
     40     NaN
     41     > y = {{alias}}( 0.0, NaN, 1.0 )
     42     NaN
     43     > y = {{alias}}( 0.0, 0.0, NaN )
     44     NaN
     45 
     46 
     47 {{alias}}.factory( a, b )
     48     Returns a function for evaluating the moment-generating function (MGF)
     49     of a uniform distribution with minimum support `a` and maximum support `b`.
     50 
     51     Parameters
     52     ----------
     53     a: number
     54         Minimum support.
     55 
     56     b: number
     57         Maximum support.
     58 
     59     Returns
     60     -------
     61     mgf: Function
     62         Moment-generating function (MGF).
     63 
     64     Examples
     65     --------
     66     > var mymgf = {{alias}}.factory( 6.0, 7.0 );
     67     > var y = mymgf( 0.1 )
     68     ~1.916
     69     > y = mymgf( 1.1 )
     70     ~1339.321
     71 
     72     See Also
     73     --------
     74